Full metadata record

DC Field Value Language
dc.contributor.authorYoo, Jaeyoung-
dc.contributor.authorChan, Chen-Hui-
dc.contributor.authorChoi, Suyeon-
dc.contributor.authorHong, Doosun-
dc.contributor.authorPaek, Sae Yane-
dc.contributor.authorBang, Kihoon-
dc.contributor.authorKim, Jong Min-
dc.contributor.authorKim, Donghun-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorLee, Hyuck Mo-
dc.date.accessioned2025-04-25T06:00:48Z-
dc.date.available2025-04-25T06:00:48Z-
dc.date.created2025-04-25-
dc.date.issued2025-04-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152300-
dc.description.abstractTo overcome the limitations of conventional bimetallic catalysts in facilitating the oxygen reduction reaction (ORR), we employed density functional theory (DFT) screening to evaluate ternary Pd3X@Pt core@shell catalysts (X = transition metals), with the objective of increasing both the ORR activity and durability. Among the 25 candidates, Pd3Mo@Pt emerges as the most promising catalyst, showing a combination of a low limiting potential and a high dissolution potential. Experimental validation reveals that the carbon-supported Pd3Mo@Pt/C catalysts clearly exhibit exceptional mass activity (3.76 A mgPt -1) and specific activity (1.67 mA cm-2); these activities significantly surpass those of their Pt/C counterparts by factors of 10.2 and 3.18, respectively. Furthermore, these core@shell catalysts exhibit robust durability, while also exhibiting enhanced CO tolerance, as evidenced by CO stripping voltammetry. DFT calculations show that the superior activity and stability of Pd3Mo@Pt/C are attributed to the optimal modulation of the Pt surface electronic structures by the core elements, particularly Mo.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleSimultaneous Enhancement of the Activity and Durability of the Oxygen Reduction Reaction via Pd3Mo@Pt/C Catalysts-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.4c19839-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.17, no.15, pp.22498 - 22507-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume17-
dc.citation.number15-
dc.citation.startPage22498-
dc.citation.endPage22507-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001458607800001-
dc.identifier.scopusid2-s2.0-105002139562-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusPD NANOPARTICLES-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusORR ACTIVITY-
dc.subject.keywordPlusCORE-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusNANOCATALYSTS-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorPEMFCs-
dc.subject.keywordAuthorORR-
dc.subject.keywordAuthorcore-shell catalyst-
dc.subject.keywordAuthorternary alloy-
dc.subject.keywordAuthordensity functional theory-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE