Full metadata record

DC Field Value Language
dc.contributor.authorKim, Wan-Tae-
dc.contributor.authorLee, Weon-Gyu-
dc.contributor.authorAn, Hong-Eun-
dc.contributor.authorFurukawa, Hiroyasu-
dc.contributor.authorJeong, Wooseok-
dc.contributor.authorKim, Sung-Chul-
dc.contributor.authorLong, Jeffrey R.-
dc.contributor.authorJeong, Sohee-
dc.contributor.authorLee, Jung-Hoon-
dc.date.accessioned2025-04-25T06:31:49Z-
dc.date.available2025-04-25T06:31:49Z-
dc.date.created2025-04-25-
dc.date.issued2025-03-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152317-
dc.description.abstractVarious theoretical approaches, including big data and high-throughput screening techniques, have been explored in developing new materials due to their significant potential time-saving advantages. However, it remains a significant challenge to experimentally realize new materials that are predicted. In this study, we propose a novel materials design strategy that utilizes machine-learning (ML) techniques to predict new porous materials that show promise for hydrogen storage and are likely to be feasible to synthesize. By leveraging ML techniques and metal-organic framework (MOF) databases, we are able to predict the synthesizability of MOF structures. This is evidenced by the successful synthesis of a new vanadium-based MOF that exhibits excellent performance for cryogenic H2 storage. Notably, the total gravimetric and volumetric H2 uptakes are as high as 9.0 wt% and 50.0 g/L at 77 K and 150 bar. This ML-assisted materials design offers an efficient and promising approach for developing hydrogen storage materials.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleMachine learning-assisted design of metal-organic frameworks for hydrogen storage: A high-throughput screening and experimental approach-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.160766-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.507-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume507-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001431942100001-
dc.identifier.scopusid2-s2.0-85218132848-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusCOMPUTATION-READY-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusADSORBENTS-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusSORPTION-
dc.subject.keywordPlusMOFS-
dc.subject.keywordAuthorMetal-organic frameworks-
dc.subject.keywordAuthorHydrogen storage-
dc.subject.keywordAuthorSynthesizability-
dc.subject.keywordAuthorHigh-throughput screening-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE