Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Minhyuck | - |
dc.contributor.author | Park, Jimin | - |
dc.contributor.author | Ha, Son | - |
dc.contributor.author | Heo, Yeong Hoon | - |
dc.contributor.author | Kim, Jisoo | - |
dc.contributor.author | Hyun, Jong Chan | - |
dc.contributor.author | Kwak, Jin Hwan | - |
dc.contributor.author | Lee, Jeonghun | - |
dc.contributor.author | Cho, Se Youn | - |
dc.contributor.author | Jin, Hyoung-Joon | - |
dc.contributor.author | Yun, Young Soo | - |
dc.date.accessioned | 2025-04-25T07:00:15Z | - |
dc.date.available | 2025-04-25T07:00:15Z | - |
dc.date.created | 2025-04-25 | - |
dc.date.issued | 2025-08 | - |
dc.identifier.issn | 0021-9797 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152318 | - |
dc.description.abstract | To advance high-energy-density Li-S batteries, it is crucial to develop strategies that enhance the energy efficiency, power capability, and cycle stability of both lithium metal anodes (LMAs) and sulfur cathodes (SCs). This study introduces an ultra-thin (similar to 60 nm) lithium telluride (t-Li2Te) layer on a conventional polypropylene (PP) separator, designed to improve the Coulombic efficiency (CE) and cycling stability of LMAs and SCs. The t-Li2Te layer features a nanoporous structure of aggregated Li2Te nanoparticles, with nanopores filled by solid-electrolyte interface (SEI) materials during initial lithium deposition. This t-Li2Te-SEI nanohybrid layer significantly enhanced CE for LMA, reaching maximum capacity within four cycles with only 25 % total capacity loss, contrasting with a 210 % capacity loss over ten cycles in the bare PP-based anode without t-Li2Te. In high cut-off capacity tests (4 mA h cm(-2)), the t-Li2Te-based system achieved stable cycling over 350 cycles, extending cycle life tenfold compared to the bare PP-based anode. For SC applications, the t-Li2Te-SEI nanohybrid layer attained an initial CE of 98.3 %, notably higher than that (93.1 %) of the reference system. After 100 cycles, the t-Li2Te-based SC system retained 85 % capacity, showing a 20 % improvement over systems without the nanohybrid layer. | - |
dc.language | English | - |
dc.publisher | Academic Press | - |
dc.title | Ultrathin lithium chalcogenide-based nanohybrid SEI layer for suppressing lithium dendrite growth and polysulfide shuttle in Li-S batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jcis.2025.137419 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Journal of Colloid and Interface Science, v.691 | - |
dc.citation.title | Journal of Colloid and Interface Science | - |
dc.citation.volume | 691 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001459032400001 | - |
dc.identifier.scopusid | 2-s2.0-105001130420 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HIGH-ENERGY DENSITY | - |
dc.subject.keywordPlus | SEPARATOR | - |
dc.subject.keywordPlus | ION | - |
dc.subject.keywordPlus | OPPORTUNITIES | - |
dc.subject.keywordPlus | CHALLENGES | - |
dc.subject.keywordPlus | CATHODE | - |
dc.subject.keywordAuthor | Ultra-thin SEI layer | - |
dc.subject.keywordAuthor | Lithium chalcogenide nanocomposite | - |
dc.subject.keywordAuthor | Nanohybrid SEI | - |
dc.subject.keywordAuthor | Lithium metal anode | - |
dc.subject.keywordAuthor | Lithium-sulfur battery | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.