Full metadata record

DC Field Value Language
dc.contributor.authorPark, Minhyuck-
dc.contributor.authorPark, Jimin-
dc.contributor.authorHa, Son-
dc.contributor.authorHeo, Yeong Hoon-
dc.contributor.authorKim, Jisoo-
dc.contributor.authorHyun, Jong Chan-
dc.contributor.authorKwak, Jin Hwan-
dc.contributor.authorLee, Jeonghun-
dc.contributor.authorCho, Se Youn-
dc.contributor.authorJin, Hyoung-Joon-
dc.contributor.authorYun, Young Soo-
dc.date.accessioned2025-04-25T07:00:15Z-
dc.date.available2025-04-25T07:00:15Z-
dc.date.created2025-04-25-
dc.date.issued2025-08-
dc.identifier.issn0021-9797-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152318-
dc.description.abstractTo advance high-energy-density Li-S batteries, it is crucial to develop strategies that enhance the energy efficiency, power capability, and cycle stability of both lithium metal anodes (LMAs) and sulfur cathodes (SCs). This study introduces an ultra-thin (similar to 60 nm) lithium telluride (t-Li2Te) layer on a conventional polypropylene (PP) separator, designed to improve the Coulombic efficiency (CE) and cycling stability of LMAs and SCs. The t-Li2Te layer features a nanoporous structure of aggregated Li2Te nanoparticles, with nanopores filled by solid-electrolyte interface (SEI) materials during initial lithium deposition. This t-Li2Te-SEI nanohybrid layer significantly enhanced CE for LMA, reaching maximum capacity within four cycles with only 25 % total capacity loss, contrasting with a 210 % capacity loss over ten cycles in the bare PP-based anode without t-Li2Te. In high cut-off capacity tests (4 mA h cm(-2)), the t-Li2Te-based system achieved stable cycling over 350 cycles, extending cycle life tenfold compared to the bare PP-based anode. For SC applications, the t-Li2Te-SEI nanohybrid layer attained an initial CE of 98.3 %, notably higher than that (93.1 %) of the reference system. After 100 cycles, the t-Li2Te-based SC system retained 85 % capacity, showing a 20 % improvement over systems without the nanohybrid layer.-
dc.languageEnglish-
dc.publisherAcademic Press-
dc.titleUltrathin lithium chalcogenide-based nanohybrid SEI layer for suppressing lithium dendrite growth and polysulfide shuttle in Li-S batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.jcis.2025.137419-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Colloid and Interface Science, v.691-
dc.citation.titleJournal of Colloid and Interface Science-
dc.citation.volume691-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001459032400001-
dc.identifier.scopusid2-s2.0-105001130420-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-ENERGY DENSITY-
dc.subject.keywordPlusSEPARATOR-
dc.subject.keywordPlusION-
dc.subject.keywordPlusOPPORTUNITIES-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordAuthorUltra-thin SEI layer-
dc.subject.keywordAuthorLithium chalcogenide nanocomposite-
dc.subject.keywordAuthorNanohybrid SEI-
dc.subject.keywordAuthorLithium metal anode-
dc.subject.keywordAuthorLithium-sulfur battery-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE