Full metadata record

DC Field Value Language
dc.contributor.authorNersisyan, Hayk H.-
dc.contributor.authorJeong, Junmo-
dc.contributor.authorSuh, Hoyoung-
dc.contributor.authorLee, Jong Hyeon-
dc.date.accessioned2025-04-25T08:00:59Z-
dc.date.available2025-04-25T08:00:59Z-
dc.date.created2025-04-25-
dc.date.issued2025-05-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152343-
dc.description.abstractA straightforward, energy-efficient, and scalable combustion synthesis (CS) method for synthesizing graphitized hollow carbon nanocube (G-HCNC) through the magnesiothermic reduction of CaCO3 is developed. By controlling the synthesis temperature, we effectively modulated the size of self-templated MgO nanocubes, thereby influencing the size and surface area of the hollow carbon nanocubes formed on the MgO surface. In our ongoing experiments, the edge size of G-HCNC ranged from 100 to 500 nm, with a 15-50 nm thickness. Remarkably, a specific surface area as high as 977.5 m2/g near the combustion boundary at k = 8 is achieved. When tested as support for Mo2C electrocatalyst, G-HCNC demonstrated low overpotential (120 mV) in the hydrogen evaluation reaction (HER). Moreover, when loaded with 10 % Ag, G-HCNC exhibits an excellent specific capacity (428.9 F/ g) in a KOH electrolyte. This development holds promise for generating various complex structures enveloped by graphitized carbon layers for energy storage applications.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleCombustion synthesis of carbon hollow nanocubes: DFT modelling and electrochemical performance analysis-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2025.120268-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon, v.238-
dc.citation.titleCarbon-
dc.citation.volume238-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001460547300001-
dc.identifier.scopusid2-s2.0-105001157359-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusNANOCAGES-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusSULFUR-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordAuthorCombustion synthesis-
dc.subject.keywordAuthorHollow carbon nanocubes-
dc.subject.keywordAuthorSelf-templating-
dc.subject.keywordAuthorMagnesium oxide-
dc.subject.keywordAuthorCalcium carbonate-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE