Full metadata record

DC Field Value Language
dc.contributor.authorHyeong, Seok-Ki-
dc.contributor.authorMoon, Byung-Joon-
dc.contributor.authorLee, Aram-
dc.contributor.authorIm, Min Ji-
dc.contributor.authorYang, Hee Yun-
dc.contributor.authorChoi, Ji-Hee-
dc.contributor.authorKim, Seung-Il-
dc.contributor.authorMoon, Ji-Yun-
dc.contributor.authorPark, Seoungwoong-
dc.contributor.authorJang, Sung Kyu-
dc.contributor.authorKim, Tae-Wook-
dc.contributor.authorLee, Jae-Hyun-
dc.contributor.authorBae, Sukang-
dc.contributor.authorLee, Seoung-Ki-
dc.date.accessioned2025-05-09T06:00:51Z-
dc.date.available2025-05-09T06:00:51Z-
dc.date.created2025-05-07-
dc.date.issued2025-02-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152388-
dc.description.abstractMo2C-based electrocatalysts have emerged as promising alternatives to Pt noble metals for hydrogen production, owing to their high catalytic activity. However, the catalytic efficiency of Mo2C is highly sensitive to factors such as surface termination, morphology, and support. Therefore, it is crucial to develop systematic crystal structure engineering methods to precisely modulate the activity, thereby enhancing both catalytic efficiency and stability. In this study, laser-based material processing is employed to modulate the microstructure of Mo2C catalysts, with a focus on grain size control and developing a grain boundary (GB)-rich structure to enhance the kinetics of hydrogen evolution reaction (HER). Laser-based thermal control promoted the formation of fine and uniformly distributed Mo2C grains (15.6 +/- 5 nm) and high-density GBs (130 mu m-1). High-angle GBs, which occupy most Mo2C GBs, enhance electrochemically active sites, facilitate electron transfer, and shift the work function to 5.10 eV, thereby reducing hydrogen adsorption energy. In addition, electrochemical tests reveal a significant decrease in overpotential (148 mV at 10 mA cm-2) and improve Tafel slopes (67.6 mV dec-1), confirming the enhanced kinetics of the HER. This laser-induced GB engineering strategy opens a new pathway for designing high-performance Mo2C-based electrocatalysts, advancing next-generation hydrogen production technologies.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleArtificial Modulation of the Hydrogen Evolution Reaction Kinetics via Control of Grain Boundaries Density in Mo2C Through Laser Processing-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202422918-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials-
dc.citation.titleAdvanced Functional Materials-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85218709464-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusMOLYBDENUM CARBIDE-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordAuthorthermal cycle-
dc.subject.keywordAuthorgrain boundary-
dc.subject.keywordAuthorhydrogen evolution-
dc.subject.keywordAuthorlaser processing-
dc.subject.keywordAuthormolybdenum carbide-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE