Full metadata record

DC Field Value Language
dc.contributor.authorYe, Kun Hee-
dc.contributor.authorJeong, Taeyoung-
dc.contributor.authorYoon, Seungjae-
dc.contributor.authorKim, Dohyun-
dc.contributor.authorKim, Yunjae-
dc.contributor.authorHwang, Cheol Seong-
dc.contributor.authorChoi, Jung-Hae-
dc.date.accessioned2025-05-11T06:01:16Z-
dc.date.available2025-05-11T06:01:16Z-
dc.date.created2025-05-07-
dc.date.issued2025-04-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152417-
dc.description.abstractThis study proposes a new ferroelectric switching mechanism in HfO2-based ferroelectric films by using density functional theory calculations. It predicts a theoretical coercive field (E-c) consistent with the experimental value (approximate to 1 MV cm(-1)). To this end, this work considers the anisotropic nucleation and growth of reversed polarization along the three principal axes of the orthorhombic phase of HfO2 and ZrO2. This approach differs from the earlier theoretical study that assumed homogeneous switching and predicted too high E-c (approximate to 10 MV cm(-1)), and from the recent theoretical prediction that assumed domain switching but still predicted unrealistically high E-c. Along the b-direction involving the non-polar spacer sub-unit cell layer, the switching barriers (E(s)s) for nucleation and growth of a reversed domain are similar. In contrast, along the a-direction, which lacks a non-polar layer and is previously overlooked, nucleation affects neighboring polar layers, significantly reducing the E-s for growth. Switching types along the c-direction (homogeneous or stepwise) has little effect on the overall E-s. These distinct E-s characteristics along three directions predict an E-c of 1-2 MV cm(-1) for a 10-nm-thick (Hf,Zr)O-2 film, consistent with experimental results.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleAb Initio Study on 3D Anisotropic Ferroelectric Switching Mechanism and Coercive Field in HfO2 and ZrO2-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202500390-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials-
dc.citation.titleAdvanced Functional Materials-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusPIEZOELECTRICITY-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorferroelectricity-
dc.subject.keywordAuthorHf1-xZrxO2 (HZO)-
dc.subject.keywordAuthor3D anisotropic switching mechanism-
dc.subject.keywordAuthorab initio calculations-
dc.subject.keywordAuthorcoercive field (E-c)-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE