Full metadata record

DC Field Value Language
dc.contributor.authorChoe, Minki-
dc.contributor.authorRyu, Seung Ho-
dc.contributor.authorJeon, Jihoon-
dc.contributor.authorHwang, Inhong-
dc.contributor.authorJung, Jae Min-
dc.contributor.authorShim, Jae Yoon-
dc.contributor.authorLee, Sung Kwang-
dc.contributor.authorChung, Taek-Mo-
dc.contributor.authorPark, Noh-Hwal-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorBaek, In-Hwan-
dc.date.accessioned2025-05-22T06:01:01Z-
dc.date.available2025-05-22T06:01:01Z-
dc.date.created2025-05-21-
dc.date.issued2025-06-
dc.identifier.issn2050-7526-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152474-
dc.description.abstractThe integration of p-type oxide semiconductors is imperative for realization of complementary metal-oxide-semiconductor logic in monolithic 3D integrated circuits. Among the various p-type oxides, SnO has emerged as a promising channel material owing to its high hole mobility and back end of line compatibility. However, its metastable nature and susceptibility to oxidation pose substantial challenges, particularly in top-gate thin-film transistors (TFTs), where the SnO channel is directly exposed to oxidizing species during high-k HfO2 dielectric deposition. In this study, we introduce an ultrathin Al2O3 interlayer (IL) (1.5-3 nm) between the SnO channel and high-k HfO2 dielectric to mitigate this challenge. The IL enables the use of ozone as an oxidant during HfO2 deposition while preventing excessive SnO oxidation, and thereby preserving high-performance p-type conduction. Through the optimization of the interlayer thickness, we eliminated the hysteresis behavior and achieved a substantial enhancement in field-effect mobility and improvement in on/off current ratio. This study presents the first demonstration of a top-gate TFT featuring a p-type oxide channel fabricated via atomic layer deposition, enabled by the incorporation of an ultrathin Al2O3 interlayer. The findings underscore the pivotal role of interface engineering in the stabilization of p-type oxide semiconductors and provide insights into their practical implementation in advanced electronic devices.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleStabilization of top-gate p-SnO transistors via ultrathin Al2O3 interlayers for hysteresis-free operation-
dc.typeArticle-
dc.identifier.doi10.1039/d5tc00399g-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry C, v.13, no.24, pp.12308 - 12316-
dc.citation.titleJournal of Materials Chemistry C-
dc.citation.volume13-
dc.citation.number24-
dc.citation.startPage12308-
dc.citation.endPage12316-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusINTEGRATED-CIRCUITS-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE