Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Minsoo | - |
dc.contributor.author | Nam, Gi Pyo | - |
dc.contributor.author | Kim, Haksub | - |
dc.contributor.author | Park, Haesol | - |
dc.contributor.author | Kim, Ig-Jae | - |
dc.date.accessioned | 2025-05-22T06:01:29Z | - |
dc.date.available | 2025-05-22T06:01:29Z | - |
dc.date.created | 2025-05-21 | - |
dc.date.issued | 2025-04 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152479 | - |
dc.description.abstract | In the realm of face image quality assessment (FIQA), methods based on sample relative classification have shown impressive performance. However, the quality scores used as pseudo-labels assigned from images of classes with low intra-class variance could be unrelated to the actual quality in such methods. To address this issue, we present intra-class variance guidance for FIQA (IG-FIQA), a novel approach to guide FIQA training, introducing a weight parameter to alleviate the adverse impact of these classes. This method involves estimating sample intra-class variance at each iteration during training, ensuring minimal computational overhead and straightforward implementation. Furthermore, this paper proposes an on-the-fly data augmentation methodology for improved generalization performance in FIQA. Across various benchmark datasets, our proposed method, IG-FIQA, achieved notable accuracy improvements compared to conventional state-of-the-art (SOTA) FIQA methods and ensures stable performance in face recognition systems. | - |
dc.language | English | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | IG-FIQA: Improving Classifiability-Based Face Image Quality Assessment Through Intra-Class Variance Guidance | - |
dc.type | Article | - |
dc.identifier.doi | 10.1109/ACCESS.2025.3562654 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | IEEE Access, v.13, pp.73987 - 73998 | - |
dc.citation.title | IEEE Access | - |
dc.citation.volume | 13 | - |
dc.citation.startPage | 73987 | - |
dc.citation.endPage | 73998 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001480472500041 | - |
dc.identifier.scopusid | 2-s2.0-105003494803 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Telecommunications | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Telecommunications | - |
dc.type.docType | Article | - |
dc.subject.keywordAuthor | Image quality | - |
dc.subject.keywordAuthor | Prototypes | - |
dc.subject.keywordAuthor | Data augmentation | - |
dc.subject.keywordAuthor | Faces | - |
dc.subject.keywordAuthor | Computational modeling | - |
dc.subject.keywordAuthor | Benchmark testing | - |
dc.subject.keywordAuthor | Artificial neural networks | - |
dc.subject.keywordAuthor | Accuracy | - |
dc.subject.keywordAuthor | face image quality assessment | - |
dc.subject.keywordAuthor | image processing | - |
dc.subject.keywordAuthor | pattern recognition | - |
dc.subject.keywordAuthor | Training | - |
dc.subject.keywordAuthor | Face recognition | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.