Full metadata record

DC Field Value Language
dc.contributor.authorKim, Minsoo-
dc.contributor.authorNam, Gi Pyo-
dc.contributor.authorKim, Haksub-
dc.contributor.authorPark, Haesol-
dc.contributor.authorKim, Ig-Jae-
dc.date.accessioned2025-05-22T06:01:29Z-
dc.date.available2025-05-22T06:01:29Z-
dc.date.created2025-05-21-
dc.date.issued2025-04-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152479-
dc.description.abstractIn the realm of face image quality assessment (FIQA), methods based on sample relative classification have shown impressive performance. However, the quality scores used as pseudo-labels assigned from images of classes with low intra-class variance could be unrelated to the actual quality in such methods. To address this issue, we present intra-class variance guidance for FIQA (IG-FIQA), a novel approach to guide FIQA training, introducing a weight parameter to alleviate the adverse impact of these classes. This method involves estimating sample intra-class variance at each iteration during training, ensuring minimal computational overhead and straightforward implementation. Furthermore, this paper proposes an on-the-fly data augmentation methodology for improved generalization performance in FIQA. Across various benchmark datasets, our proposed method, IG-FIQA, achieved notable accuracy improvements compared to conventional state-of-the-art (SOTA) FIQA methods and ensures stable performance in face recognition systems.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleIG-FIQA: Improving Classifiability-Based Face Image Quality Assessment Through Intra-Class Variance Guidance-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2025.3562654-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Access, v.13, pp.73987 - 73998-
dc.citation.titleIEEE Access-
dc.citation.volume13-
dc.citation.startPage73987-
dc.citation.endPage73998-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001480472500041-
dc.identifier.scopusid2-s2.0-105003494803-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.type.docTypeArticle-
dc.subject.keywordAuthorImage quality-
dc.subject.keywordAuthorPrototypes-
dc.subject.keywordAuthorData augmentation-
dc.subject.keywordAuthorFaces-
dc.subject.keywordAuthorComputational modeling-
dc.subject.keywordAuthorBenchmark testing-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorAccuracy-
dc.subject.keywordAuthorface image quality assessment-
dc.subject.keywordAuthorimage processing-
dc.subject.keywordAuthorpattern recognition-
dc.subject.keywordAuthorTraining-
dc.subject.keywordAuthorFace recognition-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE