Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Gihyeon-
dc.date.accessioned2025-05-22T06:31:19Z-
dc.date.available2025-05-22T06:31:19Z-
dc.date.created2025-05-21-
dc.date.issued2025-04-
dc.identifier.issn0003-6811-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152497-
dc.description.abstractThe conical Radon transform is an integral transform that maps a given function f to its integral over a conical surface. In this study, we investigate the conical Radon transform with a fixed central axis and opening angle, considering the attenuation of radiation within the transform. Specifically, we explore the attenuated conical Radon transform. In this paper, we provide the range conditions for the attenuated conical Radon transform and its auxiliary transform. Range description of an operator is an important topic in mathematics, and it is useful for understanding the transform, completing incomplete data, improving reconstruction algorithm, correcting measurement errors. The range conditions of attenuated conical Radon transforms are given in terms of the hyperbolic differential operator.-
dc.languageEnglish-
dc.publisherTaylor & Francis-
dc.titleRange description for an attenuated conical radon transform with fixed central axis and opening angle-
dc.typeArticle-
dc.identifier.doi10.1080/00036811.2025.2491643-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplicable Analysis-
dc.citation.titleApplicable Analysis-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105003884629-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalResearchAreaMathematics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusCOMPTON CAMERA-
dc.subject.keywordPlusINVERSION-
dc.subject.keywordAuthorRadon transform-
dc.subject.keywordAuthorcone transform-
dc.subject.keywordAuthorrange description-
dc.subject.keywordAuthorCompton camera-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE