Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eum, Heesung | - |
dc.contributor.author | Cheong, Seok-Hyeon | - |
dc.contributor.author | Kim, Jiyun | - |
dc.contributor.author | Han, Seo-Jung | - |
dc.contributor.author | Kang, Minji | - |
dc.contributor.author | Yoon, Sungho | - |
dc.contributor.author | Lee, Hae-Seok | - |
dc.contributor.author | Cheong, Minserk | - |
dc.contributor.author | Lee, Hyunjoo | - |
dc.contributor.author | Lee, Dong Ki | - |
dc.date.accessioned | 2025-05-30T01:30:09Z | - |
dc.date.available | 2025-05-30T01:30:09Z | - |
dc.date.created | 2025-05-29 | - |
dc.date.issued | 2025-06 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152524 | - |
dc.description.abstract | Efficient removal of nitric oxide (NO) from flue gases remains a significant environmental challenge due to its low concentration, poor water solubility, and the presence of oxygen, which deactivates traditional NO absorbents such as Fe2+-EDTA. Herein, we present an electrochemistry-based reactive NO capture system using SO3-functionalized Fe2+-salen as an NO absorbent with outstanding oxygen resistance. The unique tetracoordinate structure of the salen-SO3 ligand reduces the electron density at the Fe2+ center, preventing its oxidation to Fe3+ under air exposure. Coupled with highly porous NiMo electrocatalysts, the system achieves an NH3 production rate of 2.0 mmol h-1 cm-2 geo with 97% Faraday efficiency under 100% NO. This continuous NO capture and conversion into NH3 was maintained under air-exposed conditions at 60% of the performance level under 100% NO, with stability over 160 h. Mechanistic studies reveal that Fe2+ is the critical active site for NO reduction and elucidate complete reaction pathways for NH3 synthesis. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Electrocatalytic Reactive Capture of NO from O2-Containing Simulated Flue Gas Using Highly O2-Resistant Fe2+-(salen-SO3) for NH3 Synthesis | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsenergylett.5c01278 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Energy Letters, v.10, no.6, pp.2880 - 2888 | - |
dc.citation.title | ACS Energy Letters | - |
dc.citation.volume | 10 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 2880 | - |
dc.citation.endPage | 2888 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.scopusid | 2-s2.0-105005512045 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Electrochemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | ABSORPTION | - |
dc.subject.keywordPlus | WATER | - |
dc.subject.keywordPlus | NITRIC-OXIDE | - |
dc.subject.keywordPlus | REDUCTION | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.