Full metadata record

DC Field Value Language
dc.contributor.authorEum, Heesung-
dc.contributor.authorCheong, Seok-Hyeon-
dc.contributor.authorKim, Jiyun-
dc.contributor.authorHan, Seo-Jung-
dc.contributor.authorKang, Minji-
dc.contributor.authorYoon, Sungho-
dc.contributor.authorLee, Hae-Seok-
dc.contributor.authorCheong, Minserk-
dc.contributor.authorLee, Hyunjoo-
dc.contributor.authorLee, Dong Ki-
dc.date.accessioned2025-05-30T01:30:09Z-
dc.date.available2025-05-30T01:30:09Z-
dc.date.created2025-05-29-
dc.date.issued2025-06-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152524-
dc.description.abstractEfficient removal of nitric oxide (NO) from flue gases remains a significant environmental challenge due to its low concentration, poor water solubility, and the presence of oxygen, which deactivates traditional NO absorbents such as Fe2+-EDTA. Herein, we present an electrochemistry-based reactive NO capture system using SO3-functionalized Fe2+-salen as an NO absorbent with outstanding oxygen resistance. The unique tetracoordinate structure of the salen-SO3 ligand reduces the electron density at the Fe2+ center, preventing its oxidation to Fe3+ under air exposure. Coupled with highly porous NiMo electrocatalysts, the system achieves an NH3 production rate of 2.0 mmol h-1 cm-2 geo with 97% Faraday efficiency under 100% NO. This continuous NO capture and conversion into NH3 was maintained under air-exposed conditions at 60% of the performance level under 100% NO, with stability over 160 h. Mechanistic studies reveal that Fe2+ is the critical active site for NO reduction and elucidate complete reaction pathways for NH3 synthesis.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleElectrocatalytic Reactive Capture of NO from O2-Containing Simulated Flue Gas Using Highly O2-Resistant Fe2+-(salen-SO3) for NH3 Synthesis-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.5c01278-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.10, no.6, pp.2880 - 2888-
dc.citation.titleACS Energy Letters-
dc.citation.volume10-
dc.citation.number6-
dc.citation.startPage2880-
dc.citation.endPage2888-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105005512045-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusNITRIC-OXIDE-
dc.subject.keywordPlusREDUCTION-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE