Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Gwang Min | - |
dc.contributor.author | Lee, Seunghyeok | - |
dc.contributor.author | Hong, Jinseok | - |
dc.contributor.author | Nahm, Seokho | - |
dc.contributor.author | Baek, Seung-Hyub | - |
dc.contributor.author | Kim, Jin-Sang | - |
dc.contributor.author | Lee, Seung-Yong | - |
dc.contributor.author | Kim, Seong Keun | - |
dc.date.accessioned | 2025-06-04T01:30:09Z | - |
dc.date.available | 2025-06-04T01:30:09Z | - |
dc.date.created | 2025-05-29 | - |
dc.date.issued | 2025-05 | - |
dc.identifier.issn | 1613-6810 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152542 | - |
dc.description.abstract | Improving thermoelectric material performance is essential for energy harvesting and solid-state cooling applications. This study demonstrated a novel structure of Bi2Te3-based thermoelectric materials with ZnO nanowire-bundled grain boundaries, realized via atomic layer deposition (ALD) and subsequent spark plasma sintering (SPS). The ZnO nanowires formed at the interfaces due to the rearrangement of the ALD-grown ZnO ultrathin layer over Bi0.4Sb1.6Te3 powder, driven by localized heating during the SPS process and the anisotropic nature of ZnO. The nanowire-bundled interfaces enhanced phonon scattering, thereby reducing lattice thermal conductivity while maintaining excellent electrical transport. This structural innovation achieved a high figure-of-merit, zTmax = 1.69 +/- 0.09 at 373 K and an average zT of 1.55 over the range of 300-473 K. A thermoelectric module fabricated with 127 p-n pairs achieved a record-high conversion efficiency of 6.57% at a temperature difference of 163 K. These findings highlight the potential of nanowire-bundled interfaces to enhance the thermoelectric material performance and pave the way for scalable next-generation energy conversion technologies. | - |
dc.language | English | - |
dc.publisher | Wiley - V C H Verlag GmbbH & Co. | - |
dc.title | Nanowire-Bundled Grain Boundaries in Thermoelectric Materials | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/smll.202503539 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Small | - |
dc.citation.title | Small | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | BI2TE3-BASED ALLOYS | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | ENHANCEMENT | - |
dc.subject.keywordPlus | FIGURE | - |
dc.subject.keywordPlus | MERIT | - |
dc.subject.keywordPlus | POWER | - |
dc.subject.keywordAuthor | interfaces | - |
dc.subject.keywordAuthor | nanowires | - |
dc.subject.keywordAuthor | phonon scattering | - |
dc.subject.keywordAuthor | thermoelectric materials | - |
dc.subject.keywordAuthor | Bi2Te3 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.