Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyunwoo-
dc.contributor.authorLee, Jihoe-
dc.contributor.authorLee, Sangseob-
dc.contributor.authorPark, Suhwan-
dc.contributor.authorLee, Yongseok-
dc.contributor.authorLee, Giyeok-
dc.contributor.authorJeon, Hyo Sang-
dc.contributor.authorHan, Man Ho-
dc.contributor.authorJin, Sunghwan-
dc.contributor.authorLee, Hyun-Wook-
dc.contributor.authorSoon, Aloysius-
dc.contributor.authorKim, Jongsoon-
dc.contributor.authorRyu, Jungki-
dc.date.accessioned2025-06-04T02:00:12Z-
dc.date.available2025-06-04T02:00:12Z-
dc.date.created2025-05-29-
dc.date.issued2025-05-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152543-
dc.description.abstractThe electrochemical CO2 reduction reaction (CO2RR) to methanol offers an eco-friendly approach to reducing carbon emissions while producing versatile liquid fuels and feedstocks. However, achieving high selectivity for methanol, especially at high current densities, remains challenging due to competing reactions that favor methane and hydrogen formation. Here, the tailored synthesis of Cu/Cu2P2O7-based hybrid catalysts is reported for efficient and selective methanol production through the discharge of lithium-ion batteries. The catalyst exhibits a Faradaic efficiency exceeding 50% in both H-cells and gas-diffusion electrode cells, achieving one of the highest reported methanol partial current densities of over 100 mA cm(-2). Experimental and computational analyses reveal a synergistic effect between Cu nanoparticles with a predominant (111) surface and Cu2P2O7 nanoparticles, which enhances selective methanol production via the HCOOH intermediate pathway. These findings provide insights into designing cost-effective electrocatalysts for selective methanol production.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleSelective Electrosynthesis of Methanol from CO2 Over Cu/Cu2P2O7 Via the Formate Pathway-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202501021-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials-
dc.citation.titleAdvanced Materials-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105005777832-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusHYDROGENATION-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusMULTICARBON PRODUCTS-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordAuthormethanol production-
dc.subject.keywordAuthorCu/Cu2P2O7 catalyst-
dc.subject.keywordAuthorHCOOH pathway-
dc.subject.keywordAuthorelectrochemical CO2 reduction reaction-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE