Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jung Hoon-
dc.contributor.authorOh, Seongkook-
dc.contributor.authorYang, Byung Chan-
dc.contributor.authorKim, Dong Hwan-
dc.contributor.authorThieu, Cam-Anh-
dc.contributor.authorHong, Jeeho-
dc.contributor.authorPark, Jeong Hwa-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorYoon, Kyung Joong-
dc.contributor.authorJi, Ho-Il-
dc.contributor.authorLee, Kang Taek-
dc.contributor.authorYang, Sungeun-
dc.contributor.authorSon, Ji-Won-
dc.date.accessioned2025-06-05T01:00:24Z-
dc.date.available2025-06-05T01:00:24Z-
dc.date.created2025-06-04-
dc.date.issued2025-07-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152557-
dc.description.abstractThin-film solid oxide fuel cells (TF-SOFCs) open up new possibilities for SOFCs beyond their current reach by lowering the operating temperature. Here, we highlight key strategies to push the envelope of TF-SOFCs-scalability, performance, and stability-through the development of all cell components. Our innovations include using a conventional ceramic NiO-YSZ anode support modified with a physical vapor deposited anode functional layer, enabling reliable and scalable gas-impermeable thin-film electrolytes. To achieve a state-of-the-art performance of 1 W cm(-2) at 500 degrees C, we optimized each cell component: reducing anode particle size and introducing a mixed ionic and electronic conductor; enhancing cathode performance via deposition optimization of La0.6Sr0.4CoO3; and decreasing electrolyte ohmic resistance with a tri-layer GDC-YSZ-GDC structure using minimal thickness of YSZ. Long-term stability tests, >500 h, revealed that Ni protrusion through the electrolyte is the key degradation mechanism in TF-SOFCs. By lowering the Ni content in the anode, we achieved 1000 h durability with a degradation rate of 2.9 % kh(-1). Furthermore, we scaled up the cell to 5 x 5 cm(2) without compromising performance and achieved >15 W total power per cell at 500 degrees C, demonstrating practical applicability of TF-SOFCs. These strategies advance TF-SOFC technology and provide key insights into developing low-temperature SOFCs with improved scalability, performance, and stability.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePushing the envelope of physical vapor deposited thin-film based solid oxide fuel cells for 500 °C operation: Securing 1 W cm?2 performance, 1000 h stability, scale up to 15 W power, and associated limitations-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.163441-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.515-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume515-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001494558600023-
dc.identifier.scopusid2-s2.0-105005002602-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusNANO-COMPOSITE-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSOFC-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusPEROVSKITE-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordAuthorSolid oxide fuel cells-
dc.subject.keywordAuthorLow-temperature solid oxide fuel cells-
dc.subject.keywordAuthorThin-film solid oxide fuel cells-
dc.subject.keywordAuthorPhysical vapor deposition-
dc.subject.keywordAuthorNano-structures-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE