Full metadata record

DC Field Value Language
dc.contributor.authorOh, Jihoon-
dc.contributor.authorChoi, Seung Ho-
dc.contributor.authorKim, Heejin-
dc.contributor.authorChung, Woo Jun-
dc.contributor.authorKim, Minkwan-
dc.contributor.authorKim, Inwoo-
dc.contributor.authorLee, Taeyong-
dc.contributor.authorLee, Jieun-
dc.contributor.authorKim, Dong Ok-
dc.contributor.authorMoon, Sunung-
dc.contributor.authorKim, Donghoon-
dc.contributor.authorChoi, Jang Wook-
dc.date.accessioned2025-06-05T08:30:38Z-
dc.date.available2025-06-05T08:30:38Z-
dc.date.created2025-05-29-
dc.date.issued2025-06-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152585-
dc.description.abstractThe commercial viability of sulfide all-solid-state batteries (ASSBs) has been hindered by limited solvent compatibility in solution processing as sulfide solid electrolytes (SEs) degrade in polar solvents. This constraint significantly restricts binder selection, which is critical for both performance-particularly at low pressures-and processability. This study addresses this critical issue by investigating thermoplastic polyurethane (TPU) as a binder dissolved in 1,6-dichlorohexane (DCH), a solvent specifically tailored for sulfide ASSBs. TPU demonstrates outstanding adhesion properties in composite anode, cathode, and SE layers, which not only enhance the long-term cycling performance but also enable double-cast solution processing with minimal binder content for electrode-SE layer manufacturing. A silicon-graphite (Si-Gr)-based pouch-cell fabricated through this solution process maintained 80% capacity retention over 100 cycles under practical conditions (40 mu m SE layer, 25 degrees C, and 2 MPa), validating its practical feasibility. The successful implementation of this optimized solvent-binding system for solution processing represents a significant advancement toward practical ASSB technologies.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleSolvent-Binder Engineering for a Practically Viable Solution Process for Fabricating Sulfide-Based All-Solid-State Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.5c00762-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.10, no.6, pp.2831 - 2838-
dc.citation.titleACS Energy Letters-
dc.citation.volume10-
dc.citation.number6-
dc.citation.startPage2831-
dc.citation.endPage2838-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105005229409-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusLITHIUM-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE