Full metadata record

DC Field Value Language
dc.contributor.authorJu, Kyoungjae-
dc.contributor.authorOh, Seongkook-
dc.contributor.authorLee, Jong Hyuk-
dc.contributor.authorKim, Hyong June-
dc.contributor.authorKim, Hyunmin-
dc.contributor.authorJo, Sung Eun-
dc.contributor.authorLee, Juhwan-
dc.contributor.authorYang, Byung Chan-
dc.contributor.authorYoon, Jisung-
dc.contributor.authorShin, Dong Won-
dc.contributor.authorPark, Wanwoo-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorKim, Young-Beom-
dc.contributor.authorYang, Sungeun-
dc.contributor.authorAn, Jihwan-
dc.date.accessioned2025-06-19T09:00:34Z-
dc.date.available2025-06-19T09:00:34Z-
dc.date.created2025-06-13-
dc.date.issued2025-05-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152640-
dc.description.abstractFor high-performance thin-film solid oxide cells (TF-SOCs), a nanostructured anode functional layer (n-AFL) that can prolong the triple-phase boundary (TPB) is crucial, particularly for low-temperature operation. However, the implementation of n-AFL (usually >1 mu m in thickness) has critical issues in scale-up and productivity. Here, the study successfully demonstrates a large-area, high-performance TF-SOFC with an n-AFL fabricated via mass-production-compatible reactive magnetron sputtering. The cell with optimized n-AFL by adjusting crucial reactive-sputtering process parameters, i.e., oxygen partial pressure and sputtering power, shows superior performance compared to that of the cell without n-AFL: the reduction both in ohmic and anodic polarization resistances by 63% and 34%, respectively, and the improvement in maximum power density by 89% (0.705 W cm(-2) vs 1.333 W cm(-2)) at 650 degrees C. When employed in large-scale cell (4 x 4 cm(2)), the TF-SOFC with n-AFL showed 19.4 W at 650 degrees C.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleLarge Area High-Performance Thin Film Solid Oxide Fuel Cell with Nanoscale Anode Functional Layer by Scalable Reactive Sputtering-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202502504-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105007030903-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusNICKEL-OXIDE-
dc.subject.keywordPlusSCALE-UP-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusSOFCS-
dc.subject.keywordAuthornanostructured anode functional layer-
dc.subject.keywordAuthorreactive sputtering-
dc.subject.keywordAuthorsolid oxide fuel cells-
dc.subject.keywordAuthorthin-film solid oxide cells-
dc.subject.keywordAuthortriple-phase boundary-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE