Full metadata record

DC Field Value Language
dc.contributor.authorGautam, Nitin Kumar-
dc.contributor.authorSharma, Aditya-
dc.contributor.authorVarshney, Mayora-
dc.contributor.authorSingh, Jitendra Pal-
dc.contributor.authorShin, Hyun-Joon-
dc.contributor.authorKumar, Shalendra-
dc.contributor.authorBrajpuriya, Ranjeet-
dc.contributor.authorLee, Byeong hyeon-
dc.contributor.authorCHAE, KEUN HWA-
dc.contributor.authorWon, Sung Ok-
dc.date.accessioned2025-06-23T06:00:06Z-
dc.date.available2025-06-23T06:00:06Z-
dc.date.created2025-06-23-
dc.date.issued2025-05-
dc.identifier.issn1144-0546-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152660-
dc.description.abstractCorrelations among the restacking tendency of MXenes' 2D layers, encapsulation of 2D MXenes with metal-oxide nanostructures, the effect of alkali metal loading, and electrochemical activities of MXenes are matters of debate and involve a deep understanding of their functionality and pseudocapacitive properties. Herein, MXene sheets were encapsulated with SnO2 and Na-SnO2 nanoparticles (NPs) and investigated for their structural, electronic, surface morphological, and electrochemical properties. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed the formation of MXenes and SnO2-based nanocomposite architectures. X-ray absorption spectroscopy (XAS) measurements, measured at the Sn M-edge and Ti L-edge, confirmed the presence of Sn4+ and Ti4+ ions in SnO2@MXene and/or Na-SnO2@MXene nanocomposites. A low concentration (similar to 1%) of Na loading in SnO2 NPs or SnO2@MXene nanocomposites facilitated supplementary redox features and, thus, offered nearly two times higher specific capacitance values than their bare counterparts. The log scan rate vs log peak current graphs unveiled a dominating surface-related charge storage mechanism in bare SnO2 NPs. Na loading enabled an appreciable diffusion-controlled charge storage mechanism, surface-related charge storage in the Na-SnO2@MXene nanocomposites, and a specific capacitance of 91.2 F g-1 at a scan rate of 5 mV s-1. The three-electrode cell of Na-SnO2@MXene nanocomposites exhibited similar to 89% retention for 3000 cycles. A two-electrode-based symmetric supercapacitor device, a Swagelok cell, was tested for the Na-SnO2@MXene sample with 1 M KOH electrolyte and 2 V LED. The symmetric supercapacitor offered a high energy density of similar to 75 W h kg-1 (at a power density of 7500 W kg-1) and a high-power density of 27 000 W kg-1 (at an energy density of 30 W h kg-1).-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleSnO2/Na-SnO2@MXene hybrid electrode materials for supercapacitor applications-
dc.typeArticle-
dc.identifier.doi10.1039/d5nj00196j-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNew Journal of Chemistry, v.49, no.26, pp.11203 - 11217-
dc.citation.titleNew Journal of Chemistry-
dc.citation.volume49-
dc.citation.number26-
dc.citation.startPage11203-
dc.citation.endPage11217-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105008017941-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusXANES-
dc.subject.keywordPlusZNO-
dc.subject.keywordPlusMXENE-
dc.subject.keywordPlusNANOCOMPOSITE-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE