Full metadata record

DC Field Value Language
dc.contributor.authorCha, Seungwoo-
dc.contributor.authorJang, Byeongseon-
dc.contributor.authorLee, Daeyeol-
dc.contributor.authorCho, Injae-
dc.contributor.authorPark, Wooyoung-
dc.contributor.authorLee, Youngmin-
dc.contributor.authorShin, Hyesoo-
dc.contributor.authorKim, Minyoung-
dc.contributor.authorSung, Chang min-
dc.contributor.authorHahn, Ji-Sook-
dc.date.accessioned2025-06-23T08:00:09Z-
dc.date.available2025-06-23T08:00:09Z-
dc.date.created2025-06-23-
dc.date.issued2025-10-
dc.identifier.issn0960-8524-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152667-
dc.description.abstractAcetoin, a four-carbon alpha-hydroxyketone with a chiral center, exists as two stereoisomers-(R)- and (S)-acetoin-both of which hold potential pharmaceutical applications. While microbial production of (R)-acetoin has been well studied, fermentative production of (S)-acetoin remains limited due to its reliance on non-enzymatic spontaneous decarboxylation of unstable intermediates. As a result, costly precursors like diacetyl or 2,3-butanediol are often used, posing challenges for economic scale-up. In this study, we engineered Saccharomyces cerevisiae to produce stereospecific (S)-acetoin directly from glucose, a low-cost and abundant carbon source. The native racemic acetoin pathway was eliminated by disrupting pyruvate decarboxylase (PDC) activity, and the stereospecificity of Bacillus subtilis alpha-acetolactate decarboxylase (ALDC), which naturally favors (R)-acetoin, was engineered to preferentially produce (S)-acetoin. Oxygen uptake was genetically enhanced to support efficient conversion of intermediates and suppress byproducts. This work established a novel, enzyme-driven pathway for (S)-acetoin biosynthesis with over 90% enantiomeric purity, without the addition of chemical compounds.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleEfficient (S)-acetoin production in Saccharomyces cerevisiae by modulating α-acetolactate decarboxylase stereospecificity-
dc.typeArticle-
dc.identifier.doi10.1016/j.biortech.2025.132767-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBioresource Technology, v.434-
dc.citation.titleBioresource Technology-
dc.citation.volume434-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001506856500001-
dc.identifier.scopusid2-s2.0-105007422472-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusLACTOCOCCUS-LACTIS-
dc.subject.keywordPlusSATURATION MUTAGENESIS-
dc.subject.keywordPlusENHANCED PRODUCTION-
dc.subject.keywordPlusBACILLUS-SUBTILIS-
dc.subject.keywordPlusACETOIN FORMATION-
dc.subject.keywordPlusYEAST-
dc.subject.keywordPlusMETABOLISM-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusPYRUVATE DECARBOXYLASE-
dc.subject.keywordPlusDIRECTED EVOLUTION-
dc.subject.keywordAuthorMetabolic engineering-
dc.subject.keywordAuthorEnzyme engineering-
dc.subject.keywordAuthorSaccharomyces cerevisiae-
dc.subject.keywordAuthorStereoselectivity-
dc.subject.keywordAuthor( S )-Acetoin-
dc.subject.keywordAuthorPyruvate decarboxylase-
dc.subject.keywordAuthorOxygen transfer-
Appears in Collections:
KIST Article > Others
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE