Full metadata record

DC Field Value Language
dc.contributor.authorYun, Jiwon-
dc.contributor.authorShin, Hyeongsik-
dc.contributor.authorKim, Seungchan-
dc.contributor.authorSeong, Boseok-
dc.contributor.authorLee, Seongjae-
dc.contributor.authorKim, Kyeounghak-
dc.contributor.authorChoi, Sun Hee-
dc.contributor.authorChoi, Sihyuk-
dc.date.accessioned2025-06-23T08:30:06Z-
dc.date.available2025-06-23T08:30:06Z-
dc.date.created2025-06-23-
dc.date.issued2025-06-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152669-
dc.description.abstractReversible protonic ceramic cells (R-PCCs) offer a compelling solution for efficient energy conversion and storage at intermediate temperatures (400-600 degrees C); however, their practical implementation and overall electrochemical performance are severely constrained by sluggish electrochemical reaction kinetics at the air electrode. Herein, a novel triple ionic-electronic conducting material is presented, the Ni-doped layered perovskite PrBa0.5Sr0.5Co1.8Ni0.2O5+delta (PBSCN20), to be utilized as an air electrode in R-PCCs. Thermogravimetric analysis and density functional theory calculations demonstrate that Ni doping at the Co site significantly promoted oxygen vacancy formation while simultaneously facilitating proton uptake and migration. Consequently, the R-PCCs with a PBSCN20 air electrode exhibited outstanding electrochemical performance, attaining peak power densities of 1.30 and 0.60 W cm-2 in fuel cell mode, and current densities of -1.72 and -0.41 A cm-2 at 1.3 V in electrolysis mode at 600 and 500 degrees C, respectively, as well as superior long-term stability for over 700 h at 500 degrees C.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleHighly Active Air Electrode with Enhanced Proton Conduction via Isovalent Doping in a Layered Perovskite for Reversible Protonic Ceramic Cells-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202508758-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials-
dc.citation.titleAdvanced Functional Materials-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105008007421-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusPOINTS-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusELECTROCHEMICAL-CELLS-
dc.subject.keywordPlusLATTICE OXYGEN-
dc.subject.keywordAuthorlayered perovskite-
dc.subject.keywordAuthorNi doping effect-
dc.subject.keywordAuthorproton migration-
dc.subject.keywordAuthorreversible protonic ceramic cells-
dc.subject.keywordAuthorair electrode-
dc.subject.keywordAuthorhydration property-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE