Full metadata record

DC Field Value Language
dc.contributor.authorZhanadilov, Orynbay-
dc.contributor.authorAkhmetova, Aktilek-
dc.contributor.authorSon, Junehyuk-
dc.contributor.authorYu, Jun Ho-
dc.contributor.authorKim, Mingony-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Hee Jae-
dc.contributor.authorBakenov, Zhumabay-
dc.contributor.authorYashiro, Hitoshi-
dc.contributor.authorMyung, Seung-Taek-
dc.date.accessioned2025-06-24T02:30:30Z-
dc.date.available2025-06-24T02:30:30Z-
dc.date.created2025-06-23-
dc.date.issued2025-06-
dc.identifier.issn2522-0128-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152681-
dc.description.abstractIn this study, we investigate the underlying causes of degradation in Li4Ti5O12//LiMn2O4 cells with an N/P ratio of 0.9 utilizing 19.44 m LiN(SO2CF3)(2) and 8.33 m LiN(SO2CF2CF3)(2) (Li(TFSI)(0.7)(BETI)(0.3)center dot 2H(2)O), a hydrate-melt electrolyte. We identify the formation of hydrofluoric acid (HF) during electrochemical reactions as a key factor leading to both Mn dissolution from the LiMn2O4 cathode and rapid self-discharge at room temperature. To address these challenges, we apply a calcium fluoride (CaF2) coating to the electrodes, designed to scavenge HF by reacting to form calcium bifluoride (Ca(HF2)(2)). This reaction underscores the unique quasi-non-aqueous nature of Li(TFSI)(0.7)(BETI)(0.3)center dot 2H(2)O, which facilitates chemical processes not possible in traditional aqueous electrolytes. Electrochemical evaluations demonstrate that the CaF2-coated electrode exhibits improved capacity retention and higher coulombic efficiency than their uncoated counterparts. Despite these enhancements, the rapid self-discharge issue remains, indicating that additional factors contribute to this phenomenon and require further investigation. Our findings highlight the potential of water-in-salt systems, particularly the Li(TFSI)(0.7)(BETI)(0.3)center dot 2H(2)O electrolyte, in advancing lithium-ion battery technology by leveraging their distinct chemical environment. This study provides insights into the mechanisms affecting the stability and performance of hydrate-melt electrolyte for exploiting quasi-non-aqueous systems in energy-storage applications.-
dc.languageEnglish-
dc.publisherSPRINGER NATURE-
dc.titleAddressing electrode degradation issue in high negative to positive electrode capacity ratio lithium-ion batteries using water-in-salt electrolyte-
dc.typeArticle-
dc.identifier.doi10.1007/s42114-025-01347-5-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Composites and Hybrid Materials, v.8, no.3-
dc.citation.titleAdvanced Composites and Hybrid Materials-
dc.citation.volume8-
dc.citation.number3-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001508342000001-
dc.identifier.scopusid2-s2.0-105007981221-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLIMN2O4 CATHODE-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusSAFE-
dc.subject.keywordPlusSELF-DISCHARGE-
dc.subject.keywordAuthorHydrate-melt electrolyte-
dc.subject.keywordAuthorLithium-ion batteries-
dc.subject.keywordAuthorHF formation-
dc.subject.keywordAuthorMn dissolution-
dc.subject.keywordAuthorCaF2 coating-
dc.subject.keywordAuthorWater-in-salt electrolyte-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE