Full metadata record

DC Field Value Language
dc.contributor.authorAkbar, Muhammad-
dc.contributor.authorMoeez, Iqra-
dc.contributor.authorBhatti, Ali Hussain Umar-
dc.contributor.authorKim, Young Hwan-
dc.contributor.authorKim, Mingony-
dc.contributor.authorKim, Ji-Young-
dc.contributor.authorJeong, Jiwon-
dc.contributor.authorPark, Jae Ho-
dc.contributor.authorChung, Kyung Yoon-
dc.date.accessioned2025-06-27T07:30:07Z-
dc.date.available2025-06-27T07:30:07Z-
dc.date.created2025-06-23-
dc.date.issued2025-08-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152697-
dc.description.abstractHigh operation temperatures increase the sodium-ion conductivity of solid-state sodium batteries but may cause early short-circuiting due to sodium-ion flux inhomogeneity and rapid sodium dendrite penetration caused by poor contacts between solid electrolytes particles. This study characterizes Sb-doped Na3Zr2Si2PO12 (Na3.1Zr1.9Sb0.1Si2PO12, NZSbSP) as a prospective solid-state electrolyte and determines its compatibility with sodium-metal electrodes by examining the cycling performance of symmetric Na/NZSbSP/Na cells at 60 degrees C. Compared with Na3Zr2Si2PO12, NZSbSP exhibits a higher sodium-ion conductivity and sodium-ion transference number while featuring a lower electronic conductivity and activation energy for sodium-ion conduction. The Na/NZSbSP/Na symmetric cell sustains 3055 h of cycling at 0.1 mA cm- 2, which reflects the superior compatibility of NZSbSP with sodium metal. The postmortem analyses of NZSbSP after high-temperature operation reveal suppressed dendrite formation and the homogeneity of the sodium-ion flux at the NZSbSP-sodium metal interface. A Na0.67Fe0.5Mn0.5O2/NZSbSP/Na coin cell exhibits a discharge capacity retention of 58.84 % after 50 cycles as well as a high coulombic efficiency and sodium-ion diffusion coefficient. The oxidation of Sb during cycling is shown to prevent electrolyte degradation during high-temperature operation and stabilize the electrode interface. These results demonstrate the feasibility of using NZSbSP in solid-state sodium batteries operated at high temperatures.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleAntimony-doped NASICON-type solid electrolyte with homogeneous sodium-ion flux for high-temperature solid-state sodium batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.164300-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.517-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume517-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001505815200004-
dc.identifier.scopusid2-s2.0-105006994278-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusDENDRITES-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorSodium-ion conductivity-
dc.subject.keywordAuthorSb-doped NASICON-type solid electrolyte-
dc.subject.keywordAuthorSodium dendrite tolerance-
dc.subject.keywordAuthorSolid-state sodium battery-
dc.subject.keywordAuthorHigh-temperature operation-
dc.subject.keywordAuthorStructural stability-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE