Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jisoo-
dc.contributor.authorHeo, Yeong Hoon-
dc.contributor.authorLee, Jeonghun-
dc.contributor.authorHa, Son-
dc.contributor.authorPark, Jimin-
dc.contributor.authorHyun, Jong Chan-
dc.contributor.authorPark, Minhyuck-
dc.contributor.authorKang, Dong Hyuk-
dc.contributor.authorKim, Jung Hoon-
dc.contributor.authorJin, Hyoung-Joon-
dc.contributor.authorHan, Joong Tark-
dc.contributor.authorYun, Young Soo-
dc.date.accessioned2025-06-27T08:00:11Z-
dc.date.available2025-06-27T08:00:11Z-
dc.date.created2025-06-23-
dc.date.issued2025-06-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152701-
dc.description.abstractDeveloping high-areal-capacity lithium metal anodes (LMAs) with exceptional reversibility, rapid charge-transfer kinetics, and long-term cycling stability remains a critical challenge for enabling next-generation high-energy-density lithium batteries. 2D electrodes suffer from poor rate performance and early lithium depletion at the electrode-electrolyte interface, while 3D architectures exhibit low Coulombic efficiency (CE) and excessive electrolyte consumption, compromising long-term stability. Herein, a nanostructured paper electrode (NPE) composed of oxygen-functionalized single-walled carbon nanotubes (Ox-SWCNTs) is introduced with a molecular-scale dual-ionophilic chitosan coating (C-NPE) to enhance LMA performance. The chitosan layer 1) reduces initial electrolyte decomposition to 1/25, 2) promotes an ultrathin, inorganic-rich solid-electrolyte-interface layer, and 3) increases active surface area and electrolyte uptake. At high areal capacity tests of 4.0 mA h cm(-)(2), the high CE of >99.0% is achieved, and the overpotential is reduced by half, sustaining stable cycling for over 350 cycles-a tenfold increase compared to the premature failure observed in NPEs at 35 cycles. Furthermore, when integrated into Li-S batteries, C-NPE-based LMAs exhibit markedly suppressed polysulfide shuttling, mitigating capacity decay and overpotential-induced voltage drop. This enables a high energy density of 2385 Wh kg(-)(1) and a power density of 3475 W kg(-)(1), with stable operation over 150 cycles.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleMolecular-Level Dual-Ionophilic Passivation for High-Areal-Capacity Lithium Metal Anodes on Nanostructured Paper Electrodes-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202507856-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials-
dc.citation.titleAdvanced Functional Materials-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105007780895-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusMU-M-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordAuthorhigh-areal-capacity lithium metal anode-
dc.subject.keywordAuthordual-ionophilic-
dc.subject.keywordAuthormolecular-level passivation-
dc.subject.keywordAuthorartificial SEI layer-
dc.subject.keywordAuthornanostructured electrode-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE