Full metadata record

DC Field Value Language
dc.contributor.authorKim, Garam-
dc.contributor.authorYoon, Jeong-Myeong-
dc.contributor.authorKim, Youngoh-
dc.contributor.authorYu, Ji-Hyun-
dc.contributor.authorLee, Chul-Ho-
dc.contributor.authorKim TaeKyeong-
dc.contributor.authorByeon, Young-Woon-
dc.contributor.authorJung, Yun-Chae-
dc.contributor.authorCho, Hyeonjin-
dc.contributor.authorPark, Heetaek-
dc.contributor.authorChoi, Jeong-Hee-
dc.contributor.authorHa, Yoon-Cheol-
dc.contributor.authorPark, Cheol-Min-
dc.contributor.authorNam, Ki-Hun-
dc.date.accessioned2025-07-17T07:00:19Z-
dc.date.available2025-07-17T07:00:19Z-
dc.date.created2025-07-10-
dc.date.issued2025-07-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152745-
dc.description.abstractLi metal anodes hold great promise for next-generation all-solid-state batteries (ASSBs) due to their high energy density. However, their practical implementation is severely limited by dendrite formation and interfacial instability, leading to rapid capacity degradation and short-circuiting. In this study, we introduce a Li2ZnSb (LZS) interlayer designed to suppress dendrite growth, enhance Li-ion transport, and improve Li reversibility. Electrochemical evaluations reveal that the LZS interlayer effectively stabilizes the Li metal?solid electrolyte interface, enabling highly reversible Li plating/stripping with superior cycling retention. To demonstrate the scalability of LZS, we developed a transfer printing method, successfully fabricating sheet-type LZS-Li anodes for integration into pouch-type ASSBs. The resulting pouch cells exhibit high areal capacity, excellent rate capability, and long-term cycling stability under low external pressure. These findings highlight LZS as a transformative interface engineering strategy, bridging the gap toward the practical realization of high-energy-density and long-lasting ASSBs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleLi2ZnSb Interlayer for Interface Stabilization of Li Metal Anodes in All-Solid-State Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.5c01743-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.10, no.7, pp.3570 - 3579-
dc.citation.titleACS Energy Letters-
dc.citation.volume10-
dc.citation.number7-
dc.citation.startPage3570-
dc.citation.endPage3579-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001520225500001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE