Full metadata record

DC Field Value Language
dc.contributor.authorWon, Jongin-
dc.contributor.authorMun, Yeongjun-
dc.contributor.authorKang, Yeong A.-
dc.contributor.authorPark, Woomin-
dc.contributor.authorKim, Hyun-Sik-
dc.contributor.authorKim, Jungwon-
dc.contributor.authorJang, Kwang-Suk-
dc.date.accessioned2025-07-18T03:00:11Z-
dc.date.available2025-07-18T03:00:11Z-
dc.date.created2025-07-18-
dc.date.issued2025-09-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152759-
dc.description.abstractWe report a dual advance in wearable thermoelectrics by combining a materials-level doping strategy with a device-level architectural innovation. Freestanding, ultra-flexible Ag2Se films are doped with trace amounts (tens of ppm) of Cu2Se nanoparticles, yielding a dramatic enhancement in thermoelectric performance. At an optimal Cu2Se doping of 50 ppm, the n-type Ag2Se films achieve a room temperature zT of-0.55 (versus-0.46 for undoped films) while maintaining an extraordinary bending radius of 0.4 mm. This improvement is attributed to a finely tuned carrier concentration and increased phonon scattering imparted by the Cu2Se nanoparticle inclusions, leading to a favorable balance of Seebeck coefficient, electrical conductivity, and thermal conductivity. Building on this high-performance flexible freestanding film, we design and experimentally demonstrate a novel vertical thermoelectric generator (TEG) architecture optimized for the predominantly out-of-plane temperature gradients of human body heat. The wearable TEG generates a maximum power/area of-2.6 mu W cm-2 from a Delta T of-10 degrees C on a human forearm, substantially outperforming conventional in-plane designs. Our work highlights a synergistic approach to advance wearable energy harvesting: enhancing the intrinsic zT of flexible thermoelectric materials while pioneering device architectures that bridge the gap between material innovation and practical energy harvesting from the human body.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleEnhanced zT of highly flexible freestanding Ag2Se films via Cu2Se nanoparticle doping for wearable thermoelectric generator applications-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.165068-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.519-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume519-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001518608000020-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSELENIDE THIN-FILMS-
dc.subject.keywordPlusSILVER-
dc.subject.keywordPlusCU2-XSE-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusCU-
dc.subject.keywordAuthorWearable thermoelectric generartor-
dc.subject.keywordAuthorFlexible thermoelectric films-
dc.subject.keywordAuthorSilver selenide-
dc.subject.keywordAuthorNanoparticle doping-
dc.subject.keywordAuthorVertical device architecture-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE