Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Yonghyeon | - |
dc.contributor.author | Lee, Byeongho | - |
dc.contributor.author | Kim, Seungyeon | - |
dc.contributor.author | Park, Frank C. | - |
dc.date.accessioned | 2025-07-18T03:00:27Z | - |
dc.date.available | 2025-07-18T03:00:27Z | - |
dc.date.created | 2025-07-18 | - |
dc.date.issued | 2025-07 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152762 | - |
dc.description.abstract | Effective movement primitives should be capable of encoding and generating a rich repertoire of trajectories conditioned on task-defining parameters such as vision or language inputs. While recent methods based on the motion manifold hypothesis, which assumes that a set of trajectories lies on a lower-dimensional nonlinear subspace, address challenges such as limited dataset size and the high dimensionality of trajectory data, they often struggle to capture complex task-motion dependencies, i.e., when motion distributions shift drastically with task variations. To address this, we introduce Motion Manifold Flow Primitives (MMFP), a framework that decouples the training of the motion manifold from task-conditioned distributions. Specifically, we employ flow matching models, state-of-the-art conditional deep generative models, to learn task-conditioned distributions in the latent coordinate space of the learned motion manifold. Experiments are conducted on language-guided trajectory generation tasks, where many-to-many text-motion correspondences introduce complex task-motion dependencies, highlighting MMFP's superiority over existing methods. | - |
dc.language | English | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Motion Manifold Flow Primitives for Task-Conditioned Trajectory Generation Under Complex Task-Motion Dependencies | - |
dc.type | Article | - |
dc.identifier.doi | 10.1109/LRA.2025.3575313 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | IEEE Robotics and Automation Letters, v.10, no.7, pp.7412 - 7419 | - |
dc.citation.title | IEEE Robotics and Automation Letters | - |
dc.citation.volume | 10 | - |
dc.citation.number | 7 | - |
dc.citation.startPage | 7412 | - |
dc.citation.endPage | 7419 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001508109100005 | - |
dc.relation.journalWebOfScienceCategory | Robotics | - |
dc.relation.journalResearchArea | Robotics | - |
dc.type.docType | Article | - |
dc.subject.keywordAuthor | Trajectory | - |
dc.subject.keywordAuthor | Manifolds | - |
dc.subject.keywordAuthor | Training | - |
dc.subject.keywordAuthor | Autoencoders | - |
dc.subject.keywordAuthor | Manifold learning | - |
dc.subject.keywordAuthor | Vectors | - |
dc.subject.keywordAuthor | Artificial intelligence | - |
dc.subject.keywordAuthor | Technological innovation | - |
dc.subject.keywordAuthor | Robot kinematics | - |
dc.subject.keywordAuthor | Planning | - |
dc.subject.keywordAuthor | Imitation Learning | - |
dc.subject.keywordAuthor | learning from demonstration | - |
dc.subject.keywordAuthor | representation learning | - |
dc.subject.keywordAuthor | movement primitives | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.