Full metadata record

DC Field Value Language
dc.contributor.authorCho, Seungrae-
dc.contributor.authorLee, Hyemi-
dc.contributor.authorJe, Sieun-
dc.contributor.authorLee, Juho-
dc.contributor.authorBae, Suwon-
dc.contributor.authorKim, Tae Ann-
dc.contributor.authorLee, Jaejun-
dc.date.accessioned2025-07-18T06:30:18Z-
dc.date.available2025-07-18T06:30:18Z-
dc.date.created2025-07-18-
dc.date.issued2025-09-
dc.identifier.issn0142-9418-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152775-
dc.description.abstractThe development of materials capable of shock wave energy dissipation (SWED) is critical for modern protective applications. In this study, metallosupramolecular poly(dimethylsiloxane) (PDMS) networks cross-linked with Zn2+, Cu2+, and Ni2+ ions and imidazole ligands were designed to enhance SWED by leveraging the dynamic nature of metal-ligand coordination bonds. A laser-induced shock wave technique revealed that Cu2+ cross-linked PDMS exhibited superior SWED performance, likely due to coordination rearrangement dynamics occurring within a relevant timescale for shock wave dissipation. Time-temperature superposition (TTS) analysis indicated that while associative ligand exchange may assist in shock attenuation, metal-ligand bond dissociation plays a more dominant role under extreme shock conditions. DFT calculations further demonstrated that coordination geometry significantly influences SWED performance, with Cu2+ in square planar (trans) coordination exhibiting greater rupture susceptibility. These findings highlight the tunability of metal-ligand interactions as an effective strategy for optimizing energy dissipation in metallosupramolecular polymers. Additionally, they provide a comprehensive SWED mechanism analysis by synergistically integrating a laser-induced shock wave test and DFT calculations.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleEnhancing shock wave energy dissipation in metallosupramolecular polymer by tuning metal-imidazole coordination interactions-
dc.typeArticle-
dc.identifier.doi10.1016/j.polymertesting.2025.108885-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPolymer Testing, v.150-
dc.citation.titlePolymer Testing-
dc.citation.volume150-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001517108000001-
dc.relation.journalWebOfScienceCategoryMaterials Science, Characterization & Testing-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusVISCOELASTIC PROPERTIES-
dc.subject.keywordPlusSACRIFICIAL BONDS-
dc.subject.keywordPlusBLAST-
dc.subject.keywordPlusMITIGATION-
dc.subject.keywordPlusHYDROGELS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusPDMS-
dc.subject.keywordAuthorMetallosupramolecular-
dc.subject.keywordAuthorMetal-ligand-
dc.subject.keywordAuthorHigh-strain-rate-
dc.subject.keywordAuthorPDMS-
dc.subject.keywordAuthorShock wave-
dc.subject.keywordAuthorEnergy dissipation-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE