Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jung Been-
dc.contributor.authorChoi, Changhoon-
dc.contributor.authorKim, Min Sang-
dc.contributor.authorKang, Hyeongbeom-
dc.contributor.authorKwon, Eunji-
dc.contributor.authorYu, Seungho-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2025-07-18T08:00:28Z-
dc.date.available2025-07-18T08:00:28Z-
dc.date.created2025-07-18-
dc.date.issued2025-06-
dc.identifier.issn2311-6706-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152801-
dc.description.abstractRegulating the nucleation and growth of Li metal is crucial for achieving stable high-energy-density Li metal batteries (LMBs) without dendritic Li growth, severe volume expansion, and "dead Li" accumulation. Herein, we present a modulation layer composed of porous SnP0.94/CoP p-n heterojunction particles (SCP), synthesized applying the Kirkendall effect. The unique heterointerfaces in the SCP induce a fully ionized depletion region and built-in electric field. This provides strong Li affinity, additional adsorption sites, and facilitated electron transfer, thereby guiding dendrite-free Li nucleation/growth with a low Li deposition overpotential. Moreover, the strategic design of the SCP, accounting for its reaction with Li, yields electronically conductive Co, lithiophilic Li-Sn alloy, and ionic conductive Li3P during progressive cycles. The mixed electronic and ionic conductor (MEIC) ensure the long-term stability of the SCP modulation layer. With this layer, the SCP@Li symmetric cell maintains a low overpotential for 750 cycles even at a high current density of 5 mA cm-2. Additionally, the LiFePO4//SCP@Li full cell achieves an imperceptible capacity decay of 0.03% per cycle for 800 cycles at 0.5 C. This study provides insight into MEIC heterostructures for high-performance LMBs.-
dc.languageEnglish-
dc.publisherShanghai Jiao Tong University Press-
dc.titleDesigning Metal Phosphide Solid-Electrolyte Interphase for Stable Lithium Metal Batteries Through Electrified Interface Optimization and Synergistic Conversion-
dc.typeArticle-
dc.identifier.doi10.1007/s40820-025-01813-1-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano-Micro Letters, v.17-
dc.citation.titleNano-Micro Letters-
dc.citation.volume17-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001518385300001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH AREAL CAPACITY-
dc.subject.keywordPlusCARRIER GENERATION-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusION-
dc.subject.keywordPlusRECOMBINATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordAuthorLi metal batteries-
dc.subject.keywordAuthorHeterostructures-
dc.subject.keywordAuthorIn situ reactions-
dc.subject.keywordAuthorDendrite-free anodes-
dc.subject.keywordAuthorMixed ionic/electronic conductors-
Appears in Collections:
KIST Article > Others
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE