Full metadata record

DC Field Value Language
dc.contributor.authorKim, Seonkwon-
dc.contributor.authorIm, Seongil-
dc.contributor.authorKwak, In Cheol-
dc.contributor.authorLee, Jungwha-
dc.contributor.authorRoe, Dong Gue-
dc.contributor.authorJu, Hyunsu-
dc.contributor.authorCho, Jeong Ho-
dc.date.accessioned2025-07-18T08:31:07Z-
dc.date.available2025-07-18T08:31:07Z-
dc.date.created2025-07-18-
dc.date.issued2025-06-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152814-
dc.description.abstractThe von Neumann bottleneck and growing energy demands of conventional computing systems require innovative architectural solutions. Although neuromorphic computing is a promising alternative, implementing efficient on-chip learning mechanisms remains a fundamental challenge. Herein, a novel artificial neural platform is presented that integrates three synergistic components: modulation-optimized presynaptic transistors, threshold switching memristor-based neurons, and adaptive feedback synapses. The platform demonstrates real-time synaptic weight modification through correlation-based learning, effectively implementing Hebbian principles in hardware without requiring extensive peripheral circuitry. Stable device operation and successful implementation of local learning rules are confirmed by systematically characterizing a 6 x 6 array configuration. The experimental results demonstrate a correlation between input-output signals and subsequent weight modifications, establishing a viable pathway toward hardware implementation of Hebbian learning in neuromorphic systems.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleHardware Implementation of On-Chip Hebbian Learning Through Integrated Neuromorphic Architecture-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202506920-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials-
dc.citation.titleAdvanced Materials-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusMEMRISTOR-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordAuthorartificial synapse-
dc.subject.keywordAuthorartificial neuron-
dc.subject.keywordAuthorneuromorphic computing-
dc.subject.keywordAuthorneuromorphic devices-
dc.subject.keywordAuthoron-chip learning-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE