Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Seonkwon | - |
dc.contributor.author | Im, Seongil | - |
dc.contributor.author | Kwak, In Cheol | - |
dc.contributor.author | Lee, Jungwha | - |
dc.contributor.author | Roe, Dong Gue | - |
dc.contributor.author | Ju, Hyunsu | - |
dc.contributor.author | Cho, Jeong Ho | - |
dc.date.accessioned | 2025-07-18T08:31:07Z | - |
dc.date.available | 2025-07-18T08:31:07Z | - |
dc.date.created | 2025-07-18 | - |
dc.date.issued | 2025-06 | - |
dc.identifier.issn | 0935-9648 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152814 | - |
dc.description.abstract | The von Neumann bottleneck and growing energy demands of conventional computing systems require innovative architectural solutions. Although neuromorphic computing is a promising alternative, implementing efficient on-chip learning mechanisms remains a fundamental challenge. Herein, a novel artificial neural platform is presented that integrates three synergistic components: modulation-optimized presynaptic transistors, threshold switching memristor-based neurons, and adaptive feedback synapses. The platform demonstrates real-time synaptic weight modification through correlation-based learning, effectively implementing Hebbian principles in hardware without requiring extensive peripheral circuitry. Stable device operation and successful implementation of local learning rules are confirmed by systematically characterizing a 6 x 6 array configuration. The experimental results demonstrate a correlation between input-output signals and subsequent weight modifications, establishing a viable pathway toward hardware implementation of Hebbian learning in neuromorphic systems. | - |
dc.language | English | - |
dc.publisher | WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.title | Hardware Implementation of On-Chip Hebbian Learning Through Integrated Neuromorphic Architecture | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/adma.202506920 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Advanced Materials | - |
dc.citation.title | Advanced Materials | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | MEMRISTOR | - |
dc.subject.keywordPlus | MEMORY | - |
dc.subject.keywordAuthor | artificial synapse | - |
dc.subject.keywordAuthor | artificial neuron | - |
dc.subject.keywordAuthor | neuromorphic computing | - |
dc.subject.keywordAuthor | neuromorphic devices | - |
dc.subject.keywordAuthor | on-chip learning | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.