Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jeong Hee-
dc.contributor.authorKim, Minseok-
dc.contributor.authorKim, Keun-Tae-
dc.contributor.authorChou, Namsun-
dc.contributor.authorKim, Hong Nam-
dc.contributor.authorCho, Il-Joo-
dc.contributor.authorLee, Ju Hyun-
dc.contributor.authorShin, Hyogeun-
dc.date.accessioned2025-07-18T09:00:29Z-
dc.date.available2025-07-18T09:00:29Z-
dc.date.created2025-07-18-
dc.date.issued2025-11-
dc.identifier.issn0956-5663-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152815-
dc.description.abstractNeural organoids provide a promising platform for biologically inspired computing due to their complex neural architecture and energy-efficient signal processing. However, the scalability of conventional organoid cultures is limited, restricting synaptic connectivity and functional capacity-significant barriers to developing highperformance bioprocessors. Here, we present a scalable three-dimensional (3D) packaging strategy for neural organoid arrays inspired by semiconductor 3D stacking technology. This approach vertically assembles Matrigelembedded neural organoids within a polydimethylsiloxane (PDMS)-based chamber using a removable acrylic alignment plate, creating a stable multilayer structure while preserving oxygen and nutrient diffusion. Structural analysis confirms robust inter-organoid connectivity, while electrophysiological recordings reveal significantly enhanced neural dynamics in 3D organoid arrays compared to both single organoids and two-dimensional arrays. Furthermore, prolonged culture duration promotes network maturation and increases functional complexity. This 3D stacking strategy provides a simple yet effective method for expanding the physical and functional capacity of organoid-based systems, offering a viable path toward next-generation biocomputing platforms.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleA scalable 3D packaging technique for brain organoid arrays toward high-capacity bioprocessors-
dc.typeArticle-
dc.identifier.doi10.1016/j.bios.2025.117703-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBiosensors and Bioelectronics, v.287-
dc.citation.titleBiosensors and Bioelectronics-
dc.citation.volume287-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001517347100003-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalResearchAreaBiophysics-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCEREBRAL ORGANOIDS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthor3D packaging technique-
dc.subject.keywordAuthorOrganoid-based bioprocessor-
dc.subject.keywordAuthorNeural signal recording-
dc.subject.keywordAuthorFunctional connectivity-
dc.subject.keywordAuthorComplex neural network-
dc.subject.keywordAuthorBrain organoid-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE