Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jeong Hee | - |
dc.contributor.author | Kim, Minseok | - |
dc.contributor.author | Kim, Keun-Tae | - |
dc.contributor.author | Chou, Namsun | - |
dc.contributor.author | Kim, Hong Nam | - |
dc.contributor.author | Cho, Il-Joo | - |
dc.contributor.author | Lee, Ju Hyun | - |
dc.contributor.author | Shin, Hyogeun | - |
dc.date.accessioned | 2025-07-18T09:00:29Z | - |
dc.date.available | 2025-07-18T09:00:29Z | - |
dc.date.created | 2025-07-18 | - |
dc.date.issued | 2025-11 | - |
dc.identifier.issn | 0956-5663 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152815 | - |
dc.description.abstract | Neural organoids provide a promising platform for biologically inspired computing due to their complex neural architecture and energy-efficient signal processing. However, the scalability of conventional organoid cultures is limited, restricting synaptic connectivity and functional capacity-significant barriers to developing highperformance bioprocessors. Here, we present a scalable three-dimensional (3D) packaging strategy for neural organoid arrays inspired by semiconductor 3D stacking technology. This approach vertically assembles Matrigelembedded neural organoids within a polydimethylsiloxane (PDMS)-based chamber using a removable acrylic alignment plate, creating a stable multilayer structure while preserving oxygen and nutrient diffusion. Structural analysis confirms robust inter-organoid connectivity, while electrophysiological recordings reveal significantly enhanced neural dynamics in 3D organoid arrays compared to both single organoids and two-dimensional arrays. Furthermore, prolonged culture duration promotes network maturation and increases functional complexity. This 3D stacking strategy provides a simple yet effective method for expanding the physical and functional capacity of organoid-based systems, offering a viable path toward next-generation biocomputing platforms. | - |
dc.language | English | - |
dc.publisher | Pergamon Press Ltd. | - |
dc.title | A scalable 3D packaging technique for brain organoid arrays toward high-capacity bioprocessors | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.bios.2025.117703 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Biosensors and Bioelectronics, v.287 | - |
dc.citation.title | Biosensors and Bioelectronics | - |
dc.citation.volume | 287 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001517347100003 | - |
dc.relation.journalWebOfScienceCategory | Biophysics | - |
dc.relation.journalWebOfScienceCategory | Biotechnology & Applied Microbiology | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalResearchArea | Biophysics | - |
dc.relation.journalResearchArea | Biotechnology & Applied Microbiology | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Electrochemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CEREBRAL ORGANOIDS | - |
dc.subject.keywordPlus | MODEL | - |
dc.subject.keywordAuthor | 3D packaging technique | - |
dc.subject.keywordAuthor | Organoid-based bioprocessor | - |
dc.subject.keywordAuthor | Neural signal recording | - |
dc.subject.keywordAuthor | Functional connectivity | - |
dc.subject.keywordAuthor | Complex neural network | - |
dc.subject.keywordAuthor | Brain organoid | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.