Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Jihyun | - |
dc.contributor.author | Chae, Younghyun | - |
dc.contributor.author | Lee, Chanwoo | - |
dc.contributor.author | Kwon, Gyeongjin | - |
dc.contributor.author | Lee, Woong Hee | - |
dc.contributor.author | Jeon, Hyo Sang | - |
dc.contributor.author | Cho Jinhan | - |
dc.contributor.author | Won, Da hye | - |
dc.contributor.author | Koh Jai Hyun | - |
dc.date.accessioned | 2025-07-29T02:00:39Z | - |
dc.date.available | 2025-07-29T02:00:39Z | - |
dc.date.created | 2025-07-28 | - |
dc.date.issued | 2025-07 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152860 | - |
dc.description.abstract | This study investigates how the molecular structure of imidazolium ionomers with linear alkyl side chains (CnH2n+1 where n = 1, 4, 10, 16) modulates interfacial microenvironments in the Ag-catalyzed CO2 reduction reaction (CO2RR). Variations in side chain length and molecular weight establish structure-performance relationships that link hydrophobicity and ion transport to activity and selectivity. Longer side chains suppress hydrogen evolution and enhance the CO2RR, with the n-hexadecyl ionomer achieving the highest Faradaic efficiency for the CO2RR of 90.1% in a two-compartment cell. Incorporation of this ionomer in a cation-exchange membrane-based membrane electrode assembly achieves selective CO production with a partial current density exceeding 100 mA cm(-2), outperforming a commercial benchmark. Controlled studies under lean and acidic electrolytes reveal that the ionomer maintains local alkaline environments by restricting the interfacial water and proton transport. These findings provide molecular-level insights into ionomer function and design principles for selective CO2RR in practical electrolyzers. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Ionomer Side Chains Modulate Interfacial Microenvironments for Selective CO2 Electrolysis | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acscatal.5c03583 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Catalysis, v.15, no.14, pp.12222 - 12230 | - |
dc.citation.title | ACS Catalysis | - |
dc.citation.volume | 15 | - |
dc.citation.number | 14 | - |
dc.citation.startPage | 12222 | - |
dc.citation.endPage | 12230 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001532597400001 | - |
dc.identifier.scopusid | 2-s2.0-105009816431 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.subject.keywordPlus | CARBON-DIOXIDE | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | ELECTROREDUCTION | - |
dc.subject.keywordAuthor | CO2 reduction | - |
dc.subject.keywordAuthor | Ag catalyst | - |
dc.subject.keywordAuthor | ionomer | - |
dc.subject.keywordAuthor | microenvironment | - |
dc.subject.keywordAuthor | MEA | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.