Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jihyun-
dc.contributor.authorChae, Younghyun-
dc.contributor.authorLee, Chanwoo-
dc.contributor.authorKwon, Gyeongjin-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorJeon, Hyo Sang-
dc.contributor.authorCho Jinhan-
dc.contributor.authorWon, Da hye-
dc.contributor.authorKoh Jai Hyun-
dc.date.accessioned2025-07-29T02:00:39Z-
dc.date.available2025-07-29T02:00:39Z-
dc.date.created2025-07-28-
dc.date.issued2025-07-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152860-
dc.description.abstractThis study investigates how the molecular structure of imidazolium ionomers with linear alkyl side chains (CnH2n+1 where n = 1, 4, 10, 16) modulates interfacial microenvironments in the Ag-catalyzed CO2 reduction reaction (CO2RR). Variations in side chain length and molecular weight establish structure-performance relationships that link hydrophobicity and ion transport to activity and selectivity. Longer side chains suppress hydrogen evolution and enhance the CO2RR, with the n-hexadecyl ionomer achieving the highest Faradaic efficiency for the CO2RR of 90.1% in a two-compartment cell. Incorporation of this ionomer in a cation-exchange membrane-based membrane electrode assembly achieves selective CO production with a partial current density exceeding 100 mA cm(-2), outperforming a commercial benchmark. Controlled studies under lean and acidic electrolytes reveal that the ionomer maintains local alkaline environments by restricting the interfacial water and proton transport. These findings provide molecular-level insights into ionomer function and design principles for selective CO2RR in practical electrolyzers.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleIonomer Side Chains Modulate Interfacial Microenvironments for Selective CO2 Electrolysis-
dc.typeArticle-
dc.identifier.doi10.1021/acscatal.5c03583-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Catalysis, v.15, no.14, pp.12222 - 12230-
dc.citation.titleACS Catalysis-
dc.citation.volume15-
dc.citation.number14-
dc.citation.startPage12222-
dc.citation.endPage12230-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001532597400001-
dc.identifier.scopusid2-s2.0-105009816431-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordAuthorCO2 reduction-
dc.subject.keywordAuthorAg catalyst-
dc.subject.keywordAuthorionomer-
dc.subject.keywordAuthormicroenvironment-
dc.subject.keywordAuthorMEA-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE