Full metadata record

DC Field Value Language
dc.contributor.authorWang, Jaemin-
dc.contributor.authorJin, Si-Won-
dc.contributor.authorLee, Young-Kook-
dc.contributor.authorShim, Jae-Hyeok-
dc.contributor.authorLee, Byeong-Joo-
dc.date.accessioned2025-07-29T07:00:33Z-
dc.date.available2025-07-29T07:00:33Z-
dc.date.created2025-07-28-
dc.date.issued2025-09-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152869-
dc.description.abstractEfficient hydrogen storage is critical for advancing a hydrogen-based energy economy, yet optimizing the interdependent properties of TiMn2-type alloys remains challenging. Here, we present a machine learning (ML) framework that integrates multi-objective optimization, experimental validation, and explainable AI (XAI) to guide alloy discovery. Trained on 508 data points across 207 compositions, our graph-based models predict key performance metrics, including equilibrium pressures, hysteresis, plateau slope, and capacity, with high accuracy. Experimental validation of five ML-designed alloys confirms the framework's reliability, with one candidate approaching the Pareto front under practical constraints. XAI analysis reveals how elemental properties influence performance, enabling interpretable predictions and identifying underexplored elements such as Nb. This work establishes a generalizable and interpretable approach for accelerating hydrogen storage alloy design.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleDiscovering elemental effects on hydrogen storage in TiMn2-type alloys using explainable machine learning-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2025.121297-
dc.description.journalClass1-
dc.identifier.bibliographicCitationActa Materialia, v.296-
dc.citation.titleActa Materialia-
dc.citation.volume296-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001525669200001-
dc.identifier.scopusid2-s2.0-105009433002-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusTI-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusMN-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusHYSTERESIS-
dc.subject.keywordPlusCOMPRESSOR-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorMulti-objective optimization-
dc.subject.keywordAuthorExplainable AI (XAI)-
dc.subject.keywordAuthorHydrogen storage alloys-
dc.subject.keywordAuthorTiMn 2-type intermetallics-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE