Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jae-Hun-
dc.contributor.authorLee, Hye Jin-
dc.contributor.authorLee, Soo Youn-
dc.contributor.authorNoh, Min Su-
dc.contributor.authorShin, Eun Jeong-
dc.contributor.authorJung, Hwi Jong-
dc.contributor.authorKim, Yuri-
dc.contributor.authorPark, Hee-Young-
dc.contributor.authorKim, Hee Soo-
dc.contributor.authorLee, Jiye-
dc.contributor.authorLee, Eunjik-
dc.contributor.authorKan, Eunsung-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorWoo, Sahng Hyuck-
dc.date.accessioned2025-07-30T06:00:07Z-
dc.date.available2025-07-30T06:00:07Z-
dc.date.created2025-07-28-
dc.date.issued2025-09-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152886-
dc.description.abstractThis study investigates the modification of halloysite nanotubes (HNTs) through sulfonation to enhance their performance as catalytic support materials in proton exchange membrane water electrolyzer (PEMWE) anodes. Sulfonated HNTs (S-HNTs) exhibited improved dispersion and proton transport due to the incorporation of sulfonic acid groups (10.23 x 10-5 mol/g) and reduced particle size. FTIR, XRD, thermal analysis, and TEM confirmed the successful modification, demonstrating enhanced stability and morphology. The MEA incorporating 10 wt% S-HNT01 in the anode achieved a high current density of 3.2 A cm- 2 at 1.8 V, meeting the 2026 US DoE performance target. Additionally, with a reduced IrO2 loading of 0.2 mg cm- 2, the mass activity reached 8.75 A mg-1, significantly improving catalytic efficiency while minimizing precious metal usage. Long-term testing confirmed better durability compared to unmodified HNTs. These findings demonstrate that S-HNT01 enhances the efficiency, durability, and cost-effectiveness of PEMWE, making it a promising candidate for advanced water electrolysis applications.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleAdvanced catalytic support materials featuring polymeric short-side chains for PEM water electrolysis anodes-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.164773-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.519-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume519-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001519369300030-
dc.identifier.scopusid2-s2.0-105008445525-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPROTON CONDUCTIVITY-
dc.subject.keywordPlusMEMBRANE-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorCatalytic support materials-
dc.subject.keywordAuthorHalloysite nanotube (HNT)-
dc.subject.keywordAuthorProton exchange membrane water electrolysis-
dc.subject.keywordAuthor(PEMWE)-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE