Full metadata record

DC Field Value Language
dc.contributor.authorYun, Young Hwa-
dc.contributor.authorChoi, Jungwoo-
dc.contributor.authorPark, Youngtae-
dc.contributor.authorPark, Hyeongjung-
dc.contributor.authorDoo, Gisu-
dc.contributor.authorKim, Minjoong-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorLee, Sechan-
dc.contributor.authorLee, Changsoo-
dc.contributor.authorCho, Hyun-Seok-
dc.date.accessioned2025-07-31T02:30:14Z-
dc.date.available2025-07-31T02:30:14Z-
dc.date.created2025-07-28-
dc.date.issued2025-07-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152909-
dc.description.abstractTo realize a sustainable energy transition, water electrolysis-particularly proton exchange membrane water electrolysis (PEMWE)-holds significant promise. However, practical deployment is hindered by the cost and instability of the anode catalyst, IrO2. Recent studies indicate that tuning the Ir & horbar;O bond distance, via doping or composite formation, is key to enhancing the oxygen evolution reaction (OER) performance of IrO2-based electrocatalysts. Herein, a hybrid-phase Ti-incorporated IrO2 electrocatalyst is developed, exhibiting outstanding OER activity (298.8 mV at 100 mA cm-2) and stability over 25 h. This improvement originates from asymmetric interatomic interactions introduced by Ti, as revealed by combined experimental X-ray analyses and theoretical modeling. Ti incorporation induces tensile strain along the z-axis in IrO2 motifs, effectively reducing the average Ir & horbar;O bond distance and thereby enhancing OER activity. In situ X-ray absorption spectroscopy further confirms that at 1.5 V (vs. RHE), the elongated Ir & horbar;O bond facilitates & horbar;OOH* intermediate formation while suppressing Ir dissolution, contributing to superior stability. These findings underscore the critical role of Ir & horbar;O bond engineering in balancing activity and durability, offering strategic insights for the rational design of high-performance OER catalysts for renewable energy technologies.-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleOptimizing Hybrid-phase IrO2 Catalysts with Ti for Enhanced Oxygen Evolution Reaction for Proton Exchange Membrane Water Electrolysis-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202503601-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall-
dc.citation.titleSmall-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105011077356-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusIRO2-TIO2-
dc.subject.keywordPlusDISSOLUTION-
dc.subject.keywordPlusHIGH-SURFACE-AREA-
dc.subject.keywordPlusIRIDIUM OXIDES-
dc.subject.keywordAuthoroxygen evolution-
dc.subject.keywordAuthordissolution mechanism-
dc.subject.keywordAuthorin situ XAS-
dc.subject.keywordAuthorIrO2-
dc.subject.keywordAuthorOER stability-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE