Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Min, Su Bin | - |
dc.contributor.author | Kang, Miso | - |
dc.contributor.author | Jeon, Yoon-Jae | - |
dc.contributor.author | Kim, Eun-Young | - |
dc.contributor.author | Kim, Jong Hak | - |
dc.contributor.author | Kim, Jeong-Hoon | - |
dc.date.accessioned | 2025-08-20T05:32:50Z | - |
dc.date.available | 2025-08-20T05:32:50Z | - |
dc.date.created | 2025-08-20 | - |
dc.date.issued | 2025-07 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152975 | - |
dc.description.abstract | Developing high-performance membranes for post-combustion CO2 separation is essential in addressing the ongoing climate crisis. In this study, we fabricated a series of composite mixed-matrix membranes (MMMs) featuring ultrathin 100 nm-thick films, incorporating UiO-66 nanocrystals with three distinct functional groups (-H, -Br, -NO2) as fillers, a poly(glycidyl methacrylate-co-poly(oxyethylene methacrylate)) (PGO) polymer matrix, and poly[1-(trimethylsilyl-1-propyne)] (PTMSP)-coated polysulfone supports. The incorporation of functionalized UiO-66 fillers significantly enhanced the CO2 permeance and CO2/N2 and CO2/CH4 selectivities of the ultrathin-film-coated MMMs, owing to improved CO2 solubility and diffusivity. Notably, PGO/UiO-66-NO2 MMMs exhibited superior CO2 separation performance compared to PGO/UiO-66 and PGO/UiO-66-Br MMMs. This enhancement is attributed to the exceptionally high CO2 adsorption capacity of UiO-66-NO2, along with its excellent interfacial compatibility with the PGO polymer matrix. The optimal CO2 separation performance was achieved with the UiO-66-NO2 MMM at 20% particle loading, yielding a CO2 permeance of 1816 GPU and CO2/N2 and CO2/CH4 selectivities of 37 and 14, respectively. These findings highlight the excellent CO2/N2 and CO2/CH4 separation efficiency of UiO-66-based MMMs, underscoring their potential as promising candidates for CO2 capture in post-combustion processes from fossil fuels and biogas. Moreover, this study emphasizes the critical role of optimizing polymer-metal-organic framework (MOF) combinations by considering both the CO2 uptake capacity of the filler and the interfacial compatibility between the polymer and MOF. | - |
dc.language | English | - |
dc.publisher | Royal Society of Chemistry | - |
dc.title | Rational design of ultrathin, functionalized UiO-66 mixed-matrix membranes for CO2 separation: balancing CO2 uptake and interfacial compatibility | - |
dc.type | Article | - |
dc.identifier.doi | 10.1039/d5ta01957e | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Journal of Materials Chemistry A | - |
dc.citation.title | Journal of Materials Chemistry A | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | CAPTURE | - |
dc.subject.keywordPlus | COMPOSITE MEMBRANES | - |
dc.subject.keywordPlus | RECENT PROGRESS | - |
dc.subject.keywordPlus | PERFORMANCE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.