Full metadata record

DC Field Value Language
dc.contributor.authorTong, Jun-
dc.contributor.authorSeo, Haewon-
dc.contributor.authorChoi, Yunseo-
dc.contributor.authorWon, Ji-eun-
dc.contributor.authorPark, Jinhong-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorHong, Jongsup-
dc.contributor.authorChang, Hye Jung-
dc.contributor.authorZhou, Baowen-
dc.contributor.authorCao, Rongchang-
dc.contributor.authorNi, Na-
dc.contributor.authorYoon, Kyung Joong-
dc.contributor.authorZhu, Lei-
dc.contributor.authorHuang, Zhen-
dc.date.accessioned2025-08-20T06:09:03Z-
dc.date.available2025-08-20T06:09:03Z-
dc.date.created2025-08-20-
dc.date.issued2025-07-
dc.identifier.issn2198-3844-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152983-
dc.description.abstractConventional solid oxide electrolysis cells (SOECs) with nickel/yttria-stabilized zirconia (Ni/YSZ) electrodes suffer from low CO2 reduction activity and severe carbon deposition below 800 degrees C, limiting scalability. This study introduces a novel medium-entropy alloy/Mn-based oxide composite catalyst deposited via simple infiltration onto the fuel electrode, creating hierarchical heterogeneous metal/oxide nano-interfaces. The catalyst-decorated cell achieves a remarkable 46% increase in CO2 electrolysis current density, reaching 2.15 A cm(-2) at 1.5 V and 750 degrees C. Simultaneously, the catalyst demonstrates exceptional carbon deposition resistance, evidenced by a 75% increase in the current density threshold for carbon formation. The cell maintains stable, carbon-free operation for 200 h at an extreme current density of 1.0 A cm(-2). Comprehensive analyses combining in situ characterization and density functional theory (DFT) calculations revealed the enhanced performance originates from synergistic effects between the unique composition of the medium-entropy alloy and Mn-based oxides, and their distinctive nanostructured interfaces. This work presents a promising approach for developing advanced electrode materials for CO2 electrolysis in SOECs, significantly contributing to the scalability and practical application of this critical technology.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleMedium-Entropy Alloy/Oxide Nano Composite for High-Performing High-Temperature CO2 Electrolysis with Remarkable Carbon Deposition Resistance-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202508800-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPEROVSKITE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordAuthorCO2 electrolysis-
dc.subject.keywordAuthorheterostructure-
dc.subject.keywordAuthormedium-entropy materials-
dc.subject.keywordAuthorSOEC-
dc.subject.keywordAuthoranti-coking-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE