Full metadata record

DC Field Value Language
dc.contributor.authorKim, Seeun-
dc.contributor.authorOh, Simaek-
dc.contributor.authorWoo, Hyeonuk-
dc.contributor.authorSim, Jiho-
dc.contributor.authorSeok, Chaok-
dc.contributor.authorPark, Hahnbeom-
dc.date.accessioned2025-08-20T06:36:37Z-
dc.date.available2025-08-20T06:36:37Z-
dc.date.created2025-08-20-
dc.date.issued2025-07-
dc.identifier.issn1758-2946-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152992-
dc.description.abstractInteractions of proteins with other molecules are often mediated by a set of critical binding motifs on their surfaces. Most traditional binder designs relied on motifs borrowed from known binder molecules, which highly restricted their applicability to novel targets or new binding sites. This work presents a deep learning network MotifGen that predicts potential binder motifs directly from receptor structures without further supporting information. MotifGen generates motif profiles at the receptor surface for 14 types of functional groups or 6 chemical interaction classes. These profiles are highly human-interpretable and can be further utilized as pre-trained embedding inputs for versatile few-shot binder design applications. We demonstrate MotifGen's effectiveness through its applications to peptide binder design and small molecule binding site prediction, where it either surpassed existing methods or added significant value when integrated. Our motif-centric approach can offer a new design strategy for novel binder discovery for challenging receptor targets.-
dc.languageEnglish-
dc.publisherBMC-
dc.titleDeep learning molecular interaction motifs from receptor structures alone-
dc.typeArticle-
dc.identifier.doi10.1186/s13321-025-01055-8-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Cheminformatics, v.17, no.1-
dc.citation.titleJournal of Cheminformatics-
dc.citation.volume17-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001539975600001-
dc.identifier.scopusid2-s2.0-105012167600-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPROTEIN-STRUCTURE-
dc.subject.keywordPlusDNA INTERACTIONS-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusATOMS-
dc.subject.keywordAuthorStructure-based drug design-
dc.subject.keywordAuthorBinding motif-
dc.subject.keywordAuthorPeptide design-
dc.subject.keywordAuthorProtein structure analysis-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE