Full metadata record

DC Field Value Language
dc.contributor.authorKim, Taebin-
dc.contributor.authorOh, Kyeong-Seok-
dc.contributor.authorOh, Sejung-
dc.contributor.authorJung, Jong Gun-
dc.contributor.authorKim, Gwanho-
dc.contributor.authorKim, Woojoong-
dc.contributor.authorKim, Yeonji-
dc.contributor.authorKim, Jiwon-
dc.contributor.authorKang, Hyunseo-
dc.contributor.authorLee, Sang-Young-
dc.contributor.authorPark, Cheolmin-
dc.date.accessioned2025-08-20T07:05:13Z-
dc.date.available2025-08-20T07:05:13Z-
dc.date.created2025-08-20-
dc.date.issued2025-07-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153000-
dc.description.abstractThe development of ionic materials with high ionic conductivity and mechanical strength is challenging. This study presents a novel synthetic strategy for the development of a mechanically robust and ionically conductive polyampholyte elastomer based on ionic dimers (IDs) with strong ionic bonds between imidazolium and sulfonate. Polymerization of ID monomers with a network that forms a cross-linking moiety results in a novel polyampholyte ID elastomer (IDE). The addition of lithium (Li) salts in the IDE substantially enhances the ionic conductivity up to 0.82 mS cm-1 with a high Li+ transference number (tLi(+)) of 0.79. The mechanical properties of the IDE with Li salts are remarkable, with a tensile strength of 27.4 MPa and a Young's modulus of 211 MPa, outperforming previous polyampholyte elastomers. A resistive-type iontronic sensor using the IDE exhibited excellent sensitivity (gauge factor = 2.92) and reliable cycle performance (approximate to 400 cycles) under repetitive stress. The IDE serves as a polymer electrolyte in a pouch-type full cell, showing stable capacity at a high current density of 1.0 C (corresponding to 4.0 mA cm-2) under ambient conditions (25 degrees C, 0.2 MPa). This synthetic strategy offers a new approach for designing ionic materials with high conductivity and mechanical strength.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleMechanically Robust and Ion-Conductive Polyampholyte Elastomers via Dimeric Ionic Bonding-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202508670-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials-
dc.citation.titleAdvanced Materials-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105011970616-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusHYDROGELS-
dc.subject.keywordPlusTOUGHNESS-
dc.subject.keywordAuthorall-solid-state batteries-
dc.subject.keywordAuthorionic conductivity-
dc.subject.keywordAuthorionic dimer elastomer-
dc.subject.keywordAuthormechanical strength-
dc.subject.keywordAuthorresistive-type iontronic sensor-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE