Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Taebin | - |
dc.contributor.author | Oh, Kyeong-Seok | - |
dc.contributor.author | Oh, Sejung | - |
dc.contributor.author | Jung, Jong Gun | - |
dc.contributor.author | Kim, Gwanho | - |
dc.contributor.author | Kim, Woojoong | - |
dc.contributor.author | Kim, Yeonji | - |
dc.contributor.author | Kim, Jiwon | - |
dc.contributor.author | Kang, Hyunseo | - |
dc.contributor.author | Lee, Sang-Young | - |
dc.contributor.author | Park, Cheolmin | - |
dc.date.accessioned | 2025-08-20T07:05:13Z | - |
dc.date.available | 2025-08-20T07:05:13Z | - |
dc.date.created | 2025-08-20 | - |
dc.date.issued | 2025-07 | - |
dc.identifier.issn | 0935-9648 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153000 | - |
dc.description.abstract | The development of ionic materials with high ionic conductivity and mechanical strength is challenging. This study presents a novel synthetic strategy for the development of a mechanically robust and ionically conductive polyampholyte elastomer based on ionic dimers (IDs) with strong ionic bonds between imidazolium and sulfonate. Polymerization of ID monomers with a network that forms a cross-linking moiety results in a novel polyampholyte ID elastomer (IDE). The addition of lithium (Li) salts in the IDE substantially enhances the ionic conductivity up to 0.82 mS cm-1 with a high Li+ transference number (tLi(+)) of 0.79. The mechanical properties of the IDE with Li salts are remarkable, with a tensile strength of 27.4 MPa and a Young's modulus of 211 MPa, outperforming previous polyampholyte elastomers. A resistive-type iontronic sensor using the IDE exhibited excellent sensitivity (gauge factor = 2.92) and reliable cycle performance (approximate to 400 cycles) under repetitive stress. The IDE serves as a polymer electrolyte in a pouch-type full cell, showing stable capacity at a high current density of 1.0 C (corresponding to 4.0 mA cm-2) under ambient conditions (25 degrees C, 0.2 MPa). This synthetic strategy offers a new approach for designing ionic materials with high conductivity and mechanical strength. | - |
dc.language | English | - |
dc.publisher | WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.title | Mechanically Robust and Ion-Conductive Polyampholyte Elastomers via Dimeric Ionic Bonding | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/adma.202508670 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Advanced Materials | - |
dc.citation.title | Advanced Materials | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.scopusid | 2-s2.0-105011970616 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | HYDROGELS | - |
dc.subject.keywordPlus | TOUGHNESS | - |
dc.subject.keywordAuthor | all-solid-state batteries | - |
dc.subject.keywordAuthor | ionic conductivity | - |
dc.subject.keywordAuthor | ionic dimer elastomer | - |
dc.subject.keywordAuthor | mechanical strength | - |
dc.subject.keywordAuthor | resistive-type iontronic sensor | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.