Full metadata record

DC Field Value Language
dc.contributor.authorAli, Ghazanfar-
dc.contributor.authorKim, HwangYoun-
dc.contributor.authorHwang, Jae-In-
dc.date.accessioned2025-08-20T07:10:50Z-
dc.date.available2025-08-20T07:10:50Z-
dc.date.created2025-08-20-
dc.date.issued2025-07-
dc.identifier.issn1546-4261-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153004-
dc.description.abstractCo-speech gestures are essential for natural human communication, yet existing synthesis methods fall short in delivering semantically aligned and contextually appropriate motions. In this paper, we present RIDGE, a hybrid system that combines rule-based and deep learning approaches to generate realistic gestures for virtual avatars and human-computer interaction. RIDGE employs a high-fidelity rule base, generated from motion capture data with the assistance of large language models, to select reliable gesture mappings. When a high-confidence match is not available, a contrastively trained deep learning model steps in to produce semantically appropriate gestures. Evaluated using a novel Gesture Cluster Affinity (GCA) metric, our system outperforms existing baselines, achieving a GCA score of 0.73 compared to a rule-based baseline of 0.6 and an end-to-end: 0.52, while the ground truth score was 0.90. Detailed analyses of system architecture, data preprocessing, and evaluation methodologies demonstrate RIDGE's potential to enhance gesture synthesis. Project Url: .-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Inc.-
dc.titleRIDGE: Rule-Infused Deep Learning for Realistic Co-Speech Gesture Generation-
dc.typeArticle-
dc.identifier.doi10.1002/cav.70034-
dc.description.journalClass1-
dc.identifier.bibliographicCitationComputer Animation & Virtual Worlds, v.36, no.4-
dc.citation.titleComputer Animation & Virtual Worlds-
dc.citation.volume36-
dc.citation.number4-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001547879700001-
dc.identifier.scopusid2-s2.0-105012884391-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordAuthorHCI-
dc.subject.keywordAuthorvirtual worlds-
dc.subject.keywordAuthorcomputer animation-
dc.subject.keywordAuthorco-speech gestures-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE