Full metadata record

DC Field Value Language
dc.contributor.authorSong, Hyeon-Ju-
dc.contributor.authorKim, Suji-
dc.contributor.authorChoi, Yoo-Jung-
dc.contributor.authorYoo, Jung-Keun-
dc.contributor.authorKim, Jinsoo-
dc.contributor.authorRyu, Won-Hee-
dc.date.accessioned2025-08-20T08:35:09Z-
dc.date.available2025-08-20T08:35:09Z-
dc.date.created2025-08-20-
dc.date.issued2025-09-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153008-
dc.description.abstractAll-solid-state batteries (ASSBs) are attracting considerable attention for use in altering conventional Li-ion batteries, owing to their high energy density and safety. However, sulfide-based solid electrolytes suffer from having a narrow electrochemical stability window and consequent side reactions with high-Ni layered cathode materials and carbon-based conductive carbon agents at high voltages, underscoring the need for a stable alternative to existing carbon agent. This causes interfacial degradation and deteriorates the cycling performance. This study introduces a highly conductive and durable cathode-framework-stabilizing additive employing black WO3-x particles for obtaining high-performance carbon-free sulfide-based ASSBs. Using black WO3-x as cathode composite layer additive stabilized the cathode/ electrolyte interface and provided both electronic and ionic conductivity in the cathode layer. In addition, the cathode composite layer with black WO3-x improved the electrochemical performance and cycle stability in ASSB cells without a carbon agent. These findings demonstrate that simply incorporating highly conductive and durable metal oxides into cathode composite layer additives can improve the cycling stability of ASSBs.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHighly conductive and durable metal oxide particles as cathode composite layer additives for carbon-free all-solid-state batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.165949-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.520-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume520-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001541138000008-
dc.identifier.scopusid2-s2.0-105011142462-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL REDOX-
dc.subject.keywordPlusARGYRODITE LI6PS5CL-
dc.subject.keywordPlusINTERFACE STABILITY-
dc.subject.keywordPlusOXYGEN VACANCIES-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusWO3-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE