Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ju, Eunkyo | - |
dc.contributor.author | Madarang, May Angelu | - |
dc.contributor.author | Kim, Yeonhwa | - |
dc.contributor.author | Chu, Rafael Jumar | - |
dc.contributor.author | Laryn, Tsimafei | - |
dc.contributor.author | Choi, Won Jun | - |
dc.contributor.author | Lee, In-Hwan | - |
dc.contributor.author | Jung, Daehwan | - |
dc.date.accessioned | 2025-08-20T08:36:15Z | - |
dc.date.available | 2025-08-20T08:36:15Z | - |
dc.date.created | 2025-08-20 | - |
dc.date.issued | 2025-08 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153009 | - |
dc.description.abstract | Thermally stable III-V tunnel junctions (TJs) with a high tunneling current are essential for integrating III-V/Si tandem solar cells via epitaxial growth. Here, we present TJs based on 1.55-1.65 eV AlGaAs materials utilizing a Si:GaAs quantum well (QW) layer delta-doped with two different dopants, Si or Te. The hybrid delta doping structure, which is formed by the incorporation of Te as a delta doping species, boosts tunneling currents as well as improves thermal stability after annealing at 600 degrees C for 90 min by minimizing several Te-related issues such as delayed incorporation, the memory effect, and even the Si amphoteric effect. Moreover, 1.65 eV AlGaAs solar cells are successfully demonstrated when grown with a hybrid delta-doped AlGaAs TJ. This study shows that the hybrid delta doping technique is a simple but powerful method to improve both the TJ performance and thermal stability for advanced III-V/Si tandem solar cells. | - |
dc.language | English | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | High Tunneling Current and Thermally Stable AlGaAs Tunnel Junctions Enabled by Hybrid Delta Doping for III-V/Si Epitaxial Tandem Cells | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsaem.5c01026 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Energy Materials, v.8, no.15, pp.10921 - 10927 | - |
dc.citation.title | ACS Applied Energy Materials | - |
dc.citation.volume | 8 | - |
dc.citation.number | 15 | - |
dc.citation.startPage | 10921 | - |
dc.citation.endPage | 10927 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001541292000001 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | DIFFUSION | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | LASERS | - |
dc.subject.keywordAuthor | tunnel junction | - |
dc.subject.keywordAuthor | hybrid delta doping | - |
dc.subject.keywordAuthor | molecularbeam epitaxy | - |
dc.subject.keywordAuthor | AlGaAs solar cell | - |
dc.subject.keywordAuthor | III-V/Sitandem cell | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.