Full metadata record

DC Field Value Language
dc.contributor.authorEntifar, Nisa Aqilla Ellenahaya-
dc.contributor.authorKim, Geon Wu-
dc.contributor.authorEntifar, Siti Aisyah Nurmaulia-
dc.contributor.authorOh, Junghwan-
dc.contributor.authorLee, Jonghee-
dc.contributor.authorLim, Dong Chan-
dc.contributor.authorKim, Soyeon-
dc.contributor.authorKim, Min-Seok-
dc.contributor.authorKim, Yong Hyun-
dc.date.accessioned2025-08-21T01:06:47Z-
dc.date.available2025-08-21T01:06:47Z-
dc.date.created2025-08-20-
dc.date.issued2025-09-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153013-
dc.description.abstractDeveloping advanced materials that balance stretchability, conductivity, and biocompatibility is essential for next-generation stretchable devices. This study reports a highly conductive and stretchable hydrogel engineered from polyvinyl alcohol (PVA) and xanthan gum (XG) using a dual cross-linking method followed by sodium persulfate treatment. The optimized hydrogel exhibited exceptional mechanical robustness, achieving a tensile strength of 1.31 MPa, elongation at break of 410.2%, and toughness of 3.16 MJ/m3. Concurrently, it demonstrated superior electrical performance with an ionic conductivity of 5.23 S/m and minimal electrical hysteresis, making it ideal for dynamic applications. Its utility as a wearable wireless sensor was confirmed by accurately tracking diverse human motions, with machine learning models classifying these movements with 84.91% accuracy. Furthermore, the hydrogel demonstrated potential for sustainable energy generation via the hydrovoltaic effect, producing a peak power density of 20.62 mu W/m2 from salinity gradients. This work presents a versatile PVA/XG hydrogel platform with significant promise for wearable electronics, human-machine interfaces, and osmotic energy harvesting. The combination of excellent mechanical properties, high conductivity, and demonstrated functionalities highlights its potential for cutting-edge technological applications.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh-performance PVA/xanthan gum hydrogel via dual cross-linking with ionic treatment for wearable sensing and hydrovoltaic energy generation-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.165637-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.520-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume520-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001539871300001-
dc.identifier.scopusid2-s2.0-105010512783-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLY(VINYL ALCOHOL)-
dc.subject.keywordPlusXANTHAN GUM-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusSOAKING-
dc.subject.keywordAuthorIonic conductive hydrogel-
dc.subject.keywordAuthorPolyvinyl alcohol-
dc.subject.keywordAuthorXanthan gum-
dc.subject.keywordAuthorDual cross-linking-
dc.subject.keywordAuthorHydrovoltaic energy harvesting-
dc.subject.keywordAuthorWireless sensor-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE