Full metadata record

DC Field Value Language
dc.contributor.authorShin, Ju Ho-
dc.contributor.authorYu, Hyun Jung-
dc.contributor.authorJung, Jiyoon-
dc.contributor.authorAn, Heseong-
dc.contributor.authorPark, Jung Hoon-
dc.contributor.authorLee, Albert S.-
dc.contributor.authorLee, Jong Suk-
dc.date.accessioned2025-08-21T01:08:44Z-
dc.date.available2025-08-21T01:08:44Z-
dc.date.created2025-08-20-
dc.date.issued2025-08-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153014-
dc.description.abstractState-of-the-art membranes derived from polymers of intrinsic microporosity offer promising alternatives to energy-intensive, thermally driven separation techniques but often suffer from reduced performance under condensable gases or physical aging. Here, extrinsically microporous polymer membranes (EMPMs) are introduced as a distinct class of microporous membranes, fabricated from perfluorinated aryl-ether-free aromatic polymers via defluorination-induced thermal cross-linking. This process generates extrinsic micropores, increases intersegmental distances, and significantly enhances gas permeability. EMPMs exhibit a Brunauer-Emmett-Teller surface area of 552 m2 g-1 and demonstrate exceptional plasticization resistance under equimolar CO2/CH4 mixed gas at pressures up to 40 bar. CO2 permeability increases from 280 to 12,000 Barrer at 1 bar and 35 degrees C, while CO2/N2 selectivity reaches 46 at -20 degrees C, surpassing the 2019 polymeric upper bound. Furthermore, extrinsically microporous hollow fiber membranes prepared via dip-coating achieve a CO2 permeance of 2174 gas permeation units and CO2/N2 selectivity of 30 at -20 degrees C, highlighting their industrial relevance. This study establishes a scalable method for fabricating high-performance microporous polymeric membranes with exceptional stability for sustainable energy and environmental applications.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleExtrinsically microporous polymer membranes derived from thermally cross-linked perfluorinated aryl-ether-free polymers for gas separation-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-025-62372-y-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.16, no.1-
dc.citation.titleNature Communications-
dc.citation.volume16-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001545534800004-
dc.identifier.scopusid2-s2.0-105012604483-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPLASTICIZATION RESISTANCE-
dc.subject.keywordPlusTHERMODYNAMIC PROPERTIES-
dc.subject.keywordPlusSORPTION-
dc.subject.keywordPlusLINKING-
dc.subject.keywordPlusPERMEATION-
dc.subject.keywordPlusPOLYIMIDES-
dc.subject.keywordPlusCAPTURE-
dc.subject.keywordPlusCO2/CH4-
dc.subject.keywordPlusROBUST-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE