Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shin, Ju Ho | - |
dc.contributor.author | Yu, Hyun Jung | - |
dc.contributor.author | Jung, Jiyoon | - |
dc.contributor.author | An, Heseong | - |
dc.contributor.author | Park, Jung Hoon | - |
dc.contributor.author | Lee, Albert S. | - |
dc.contributor.author | Lee, Jong Suk | - |
dc.date.accessioned | 2025-08-21T01:08:44Z | - |
dc.date.available | 2025-08-21T01:08:44Z | - |
dc.date.created | 2025-08-20 | - |
dc.date.issued | 2025-08 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153014 | - |
dc.description.abstract | State-of-the-art membranes derived from polymers of intrinsic microporosity offer promising alternatives to energy-intensive, thermally driven separation techniques but often suffer from reduced performance under condensable gases or physical aging. Here, extrinsically microporous polymer membranes (EMPMs) are introduced as a distinct class of microporous membranes, fabricated from perfluorinated aryl-ether-free aromatic polymers via defluorination-induced thermal cross-linking. This process generates extrinsic micropores, increases intersegmental distances, and significantly enhances gas permeability. EMPMs exhibit a Brunauer-Emmett-Teller surface area of 552 m2 g-1 and demonstrate exceptional plasticization resistance under equimolar CO2/CH4 mixed gas at pressures up to 40 bar. CO2 permeability increases from 280 to 12,000 Barrer at 1 bar and 35 degrees C, while CO2/N2 selectivity reaches 46 at -20 degrees C, surpassing the 2019 polymeric upper bound. Furthermore, extrinsically microporous hollow fiber membranes prepared via dip-coating achieve a CO2 permeance of 2174 gas permeation units and CO2/N2 selectivity of 30 at -20 degrees C, highlighting their industrial relevance. This study establishes a scalable method for fabricating high-performance microporous polymeric membranes with exceptional stability for sustainable energy and environmental applications. | - |
dc.language | English | - |
dc.publisher | Nature Publishing Group | - |
dc.title | Extrinsically microporous polymer membranes derived from thermally cross-linked perfluorinated aryl-ether-free polymers for gas separation | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/s41467-025-62372-y | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Nature Communications, v.16, no.1 | - |
dc.citation.title | Nature Communications | - |
dc.citation.volume | 16 | - |
dc.citation.number | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001545534800004 | - |
dc.identifier.scopusid | 2-s2.0-105012604483 | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | PLASTICIZATION RESISTANCE | - |
dc.subject.keywordPlus | THERMODYNAMIC PROPERTIES | - |
dc.subject.keywordPlus | SORPTION | - |
dc.subject.keywordPlus | LINKING | - |
dc.subject.keywordPlus | PERMEATION | - |
dc.subject.keywordPlus | POLYIMIDES | - |
dc.subject.keywordPlus | CAPTURE | - |
dc.subject.keywordPlus | CO2/CH4 | - |
dc.subject.keywordPlus | ROBUST | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.