Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jae Won-
dc.contributor.authorCho, Hyun Jun-
dc.contributor.authorKim, Seung Min-
dc.contributor.authorKim, Young-Kwan-
dc.date.accessioned2025-08-26T02:00:14Z-
dc.date.available2025-08-26T02:00:14Z-
dc.date.created2025-08-20-
dc.date.issued2025-12-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153026-
dc.description.abstractThis study presents an integrated strategy combining wet-chemical and dry-mechanical processes to enhance the properties and applicability of commercial directly spun carbon nanotube fiber (CNTF) with a high linear density of similar to 6 tex (g km(-1)). The sequential wet-chemical process is demonstrated for the first time based on the cross-linking of polyethyleneimine (PEI) with pyrogallol (PG). The PEI and PG (PEI@PG) treatment of CNTFs improves their properties, followed by twisting to enhance their density and alignment. These rapid sequential processes can be completed within 1 min, and the twisted PEI@PG CNTFs exhibit enhanced tensile strength, modulus, and electrical conductivity from 27.27 MPa, 0.50 GPa, and 2,685 S cm(-1) to 202.44 MPa, 5.89 GPa, and 4,370 S cm(-1). The twisted PEI@PG CNTF shows an improved gravimetric capacitance from 4.92 to 10.33 Fg-(1). The twisted Au nanoparticle-loaded PEI@PG CNTFs are harnessed as a fibrous catalyst for hydrogenation of 4-nitrophenol with a high activity of 0.054 min(-1) and electrochemical glucose sensors with high sensitivity of 304.06 mA mM(-1) cm(-2), detection limit of 0.166 mu M, and a wide linear range from 0.548 mu M to 8.0 mM, respectively. This strategy offers a simple, rapid, and scalable route to enhance the performance and applicability of CNTFs.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleIntegrated reinforcement of carbon nanotube fibers for enhancement of their applicability, mechanical and electrical properties-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2025.164066-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.712-
dc.citation.titleApplied Surface Science-
dc.citation.volume712-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001544935500001-
dc.identifier.scopusid2-s2.0-105012041953-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorNanocomposite-
dc.subject.keywordAuthorFiber-
dc.subject.keywordAuthorSupercapacitor-
dc.subject.keywordAuthorSensor-
dc.subject.keywordAuthorCatalyst-
Appears in Collections:
KIST Article > Others
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE