Boosting electrochemical CO2 reduction to CO by regulating pressure in zero-gap electrolyzer

Authors
Hussain, Muhammad ShakirAhmed, SherazSun, ChirongOh, Hyung-SukKim, Jaehoon
Issue Date
2025-10
Publisher
Elsevier BV
Citation
Journal of CO2 Utilization, v.100
Abstract
The electrochemical reduction reaction of CO2 presents a promising strategy for both CO2 utilization and renewable energy storage. However, for this process to be economically viable, it must achieve high energy efficiency, high product selectivity, and suppression of the hydrogen evolution reaction (HER) at low cell voltages and industrially relevant current densities. Thus, this paper introduces a high-pressure zero-gap membrane electrode assembly electrolyzer that uses pristine silver nanoparticles (<150 nm) as the cathode catalyst for CO2-to-CO conversion. Operating at elevated CO2 pressures of up to 1.5 MPa and in a highly alkaline environment (2 M KOH) considerably enhanced CO selectivity and energy efficiency by reducing ohmic losses and improving reaction kinetics. At an optimized pressure of 1.5 MPa, a high current density of -350 mA cm(-)(2) was sustained at an applied cell voltage of -3.2 V (-3.0 V, IR-compensated), achieving over 70 % CO Faradaic efficiency and 32 % CO energy efficiency. High-pressure operation also suppressed HER by increasing the local CO2 concentration at the catalyst surface, thereby improving CO selectivity. Additionally, salt precipitation mechanisms and their effect on catalyst deactivation were discussed.
Keywords
CARBON-DIOXIDE; DIFFUSION ELECTRODE; ELECTROREDUCTION; CROSSOVER; PRODUCTS; Zero-gap membrane electrode assembly; CO selectivity; Current density; Faradaic efficiency; CO2 reduction; CO2 reduction; Zero-gap membrane electrode assembly; CO selectivity; Current density; Faradaic efficiency
ISSN
2212-9820
URI
https://pubs.kist.re.kr/handle/201004/153027
DOI
10.1016/j.jcou.2025.103179
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE