Boosting electrochemical CO2 reduction to CO by regulating pressure in zero-gap electrolyzer
- Authors
- Hussain, Muhammad Shakir; Ahmed, Sheraz; Sun, Chirong; Oh, Hyung-Suk; Kim, Jaehoon
- Issue Date
- 2025-10
- Publisher
- Elsevier BV
- Citation
- Journal of CO2 Utilization, v.100
- Abstract
- The electrochemical reduction reaction of CO2 presents a promising strategy for both CO2 utilization and renewable energy storage. However, for this process to be economically viable, it must achieve high energy efficiency, high product selectivity, and suppression of the hydrogen evolution reaction (HER) at low cell voltages and industrially relevant current densities. Thus, this paper introduces a high-pressure zero-gap membrane electrode assembly electrolyzer that uses pristine silver nanoparticles (<150 nm) as the cathode catalyst for CO2-to-CO conversion. Operating at elevated CO2 pressures of up to 1.5 MPa and in a highly alkaline environment (2 M KOH) considerably enhanced CO selectivity and energy efficiency by reducing ohmic losses and improving reaction kinetics. At an optimized pressure of 1.5 MPa, a high current density of -350 mA cm(-)(2) was sustained at an applied cell voltage of -3.2 V (-3.0 V, IR-compensated), achieving over 70 % CO Faradaic efficiency and 32 % CO energy efficiency. High-pressure operation also suppressed HER by increasing the local CO2 concentration at the catalyst surface, thereby improving CO selectivity. Additionally, salt precipitation mechanisms and their effect on catalyst deactivation were discussed.
- Keywords
- CARBON-DIOXIDE; DIFFUSION ELECTRODE; ELECTROREDUCTION; CROSSOVER; PRODUCTS; Zero-gap membrane electrode assembly; CO selectivity; Current density; Faradaic efficiency; CO2 reduction; CO2 reduction; Zero-gap membrane electrode assembly; CO selectivity; Current density; Faradaic efficiency
- ISSN
- 2212-9820
- URI
- https://pubs.kist.re.kr/handle/201004/153027
- DOI
- 10.1016/j.jcou.2025.103179
- Appears in Collections:
- KIST Article > Others
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.