Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Min-gyeong | - |
dc.contributor.author | Go, Min-ji | - |
dc.contributor.author | Kang, Seung-Hun | - |
dc.contributor.author | Jeong, Soo-hwan | - |
dc.contributor.author | Lim, Kayeong | - |
dc.date.accessioned | 2025-08-26T02:00:51Z | - |
dc.date.available | 2025-08-26T02:00:51Z | - |
dc.date.created | 2025-08-20 | - |
dc.date.issued | 2025-07 | - |
dc.identifier.issn | 1226-3613 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153032 | - |
dc.description.abstract | Genome engineering has made remarkable strides, evolving from DNA-binding proteins such as zinc fingers and transcription activator-like effectors to CRISPR-Cas systems. CRISPR technology has revolutionized the field through its simplicity and ability to target specific genome regions via guide RNA and Cas proteins. Progress in CRISPR tools-CRISPR nucleases, base editors and prime editors-has expanded the toolkit to induce targeted insertions or deletions, nucleotide conversions and a wider array of genetic alterations. Nevertheless, variations in editing outcomes across cell types and unintended off-target effects still present substantial hurdles. Artificial intelligence (AI), which has seen rapid advances, provides high-level solutions to these problems. By leveraging large datasets from diverse experiments, AI enhances guide RNA design, predicts off-target activities and improves editing efficiency. In addition, AI aids in discovering and designing novel CRISPR systems beyond natural limitations. These developments provide new modalities essential for the innovation of personalized therapies and help to ensure efficiency, precision and safety. Here we discuss the transformative role of AI in advancing CRISPR technology. We highlight how AI contributes to refining nuclease-based editing, base editing and prime editing. Integrating AI with CRISPR technology enhances existing tools and opens doors to next-generation medicine for gene therapy. | - |
dc.language | English | - |
dc.publisher | Springer Nature | - |
dc.title | Revolutionizing CRISPR technology with artificial intelligence | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/s12276-025-01462-9 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Experimental & Molecular Medicine, v.57, no.7, pp.1419 - 1431 | - |
dc.citation.title | Experimental & Molecular Medicine | - |
dc.citation.volume | 57 | - |
dc.citation.number | 7 | - |
dc.citation.startPage | 1419 | - |
dc.citation.endPage | 1431 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.identifier.kciid | ART003231049 | - |
dc.identifier.wosid | 001541190000001 | - |
dc.identifier.scopusid | 2-s2.0-105012277064 | - |
dc.relation.journalWebOfScienceCategory | Biochemistry & Molecular Biology | - |
dc.relation.journalWebOfScienceCategory | Medicine, Research & Experimental | - |
dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
dc.relation.journalResearchArea | Research & Experimental Medicine | - |
dc.type.docType | Review | - |
dc.subject.keywordPlus | BASE EDITING OUTCOMES | - |
dc.subject.keywordPlus | GENOMIC DNA | - |
dc.subject.keywordPlus | RNA | - |
dc.subject.keywordPlus | PREDICTION | - |
dc.subject.keywordPlus | NUCLEASES | - |
dc.subject.keywordPlus | LIBRARY | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordPlus | GUIDE | - |
dc.subject.keywordPlus | ENDONUCLEASE | - |
dc.subject.keywordPlus | DETERMINANTS | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.