Full metadata record

DC Field Value Language
dc.contributor.authorLee, Donggyu-
dc.contributor.authorYun, Hongryeol-
dc.contributor.authorKim, Namju-
dc.contributor.authorKo, Nayeon-
dc.contributor.authorYoun, Jeongwon-
dc.contributor.authorCheon, Gayoung-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorHong, Chang Seop-
dc.date.accessioned2025-08-31T03:30:31Z-
dc.date.available2025-08-31T03:30:31Z-
dc.date.created2025-08-27-
dc.date.issued2025-08-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153084-
dc.description.abstractWhile strategies for proton conductivity enhancement are required, appropriate synthetic procedures are still sought. Herein, we synthesized a porous organic polymer, POP-Me40, through the judicial selection of functional groups with varying electronic effects. Postsynthetic sulfonation of POP-Me40 was conducted to produce POP-Me40-S. This material demonstrates a high conductivity of 1.42 x 10-1 S cm-1 at 80 degrees C and 90% relative humidity along with a low activation energy of 0.094 eV, consistent with the Grotthuss proton conduction mechanism. Subsequent impregnation of sulfonic acid groups in POP-Me40-S afforded a doubly acidified polymer, POP-Me40-S-SA, showing an exceptional proton conductivity of 1.91 x 10-1 S cm-1 under the same conditions. This value represents a 780000-fold increase in conductivity with respect to its unmodified precursor, POP-Me40, setting a record among porous materials. Furthermore, POP-Me40-S-SA exhibits an activation energy of 0.063 eV, one of the lowest reported, indicating the formation of highly efficient proton transport pathways within its framework channels.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleDrastic Enhancement of Proton Conductivity in a Porous Organic Polymer Conductor via Dual Postsynthetic Acidifications-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5c11522-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.17, no.34, pp.49000 - 49007-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume17-
dc.citation.number34-
dc.citation.startPage49000-
dc.citation.endPage49007-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusFRAMEWORKS-
dc.subject.keywordPlusCRYSTALLINE-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordAuthorporous organic polymers-
dc.subject.keywordAuthorproton conductivity-
dc.subject.keywordAuthorsulfonation-
dc.subject.keywordAuthorimpregnation-
dc.subject.keywordAuthorpostsynthetic modification-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE