Full metadata record

DC Field Value Language
dc.contributor.authorLee, Yeongje-
dc.contributor.authorLee, Jaekeun-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorGong, Sang Hyuk-
dc.contributor.authorKim, Jung Hyun-
dc.contributor.authorSeol, Seung Kwon-
dc.contributor.authorKim, Woo Soo-
dc.contributor.authorKim, Hyung-Seok-
dc.contributor.authorKim, Seong Ku-
dc.contributor.authorJeong, Sunho-
dc.date.accessioned2025-09-17T01:32:23Z-
dc.date.available2025-09-17T01:32:23Z-
dc.date.created2025-09-16-
dc.date.issued2025-09-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153157-
dc.description.abstractDeveloping high-energy-density SiOx anodes for lithium-ion batteries requires the strategy to address critical issues related to poor electron/ion transport kinetics and large volumetric changes during cycling. In this study, a novel approach is presented that combines digitally programmable 3D printing and mid-infrared laser annealing techniques. The chemical scheme is designed for synthesizing carbon-SiOx nanocomposites using a soft-templated sol-gel method, in which molecularly incorporated carbon nanodomains are capable of efficiently absorbing mid-infrared wavelength photons. During laser annealing, the carbon nanodomains serving as photothermal agents enable not only a highly efficient, localized carbothermal reduction to produce electrochemically active SiOx but also trigger the carbonization/graphitization of the polyacrylic acid binder for forming an electrically conductive framework. Consequently, this results in the formation of dual-porous SiOx anode, featuring mesopores (approximate to 8 nm in diameter) and macropores (100-600 nm in diameter). In parallel, the digitally programmable 3D printing process defines a grid-pore channel architecture (with a spacing of approximate to 200 mu m). It comprehensively enhances electron/ion transport and structural integrity in ultrathick electrodes. The resulting 3D anode achieves a high areal capacity of 9.5 mAh cm-2 at a mass loading as high as 6.6 mg cm-2. Combinatorial analyses reveal that the 3D-printed and laser-annealed SiOx anode achieves a significantly enhanced electrochemical performance, attributed to a substantial increase in electrical conductivity and Li-ion diffusion coefficient, along with the formation of a LiF-rich thin SEI layer.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.title3D Hierarchically Porous High-Mass Loading SiOx Anodes Enabled by Consecutive Multi-Layer Printing and Mid-Infrared Laser Annealing-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202517642-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials-
dc.citation.titleAdvanced Functional Materials-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusSOLID-ELECTROLYTE INTERPHASE-
dc.subject.keywordPlusTHICK ELECTRODES-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthor3D print-
dc.subject.keywordAuthoranode-
dc.subject.keywordAuthorlaser-
dc.subject.keywordAuthorporous-
dc.subject.keywordAuthorSiOx-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE