Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jiwoo-
dc.contributor.authorCho, Soo Jin-
dc.contributor.authorLee, Dong Su-
dc.contributor.authorPark, Sohyun-
dc.date.accessioned2025-09-17T01:34:33Z-
dc.date.available2025-09-17T01:34:33Z-
dc.date.created2025-09-16-
dc.date.issued2025-08-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153160-
dc.description.abstractMolecular thermoelectric materials, which harness molecular-level design principles to optimize energy conversion, have emerged as a promising strategy for addressing the limitations of bulk inorganic thermoelectrics, such as brittleness and high production costs. In this study, a layer-by-layer (LbL) engineered HKUST-1 surface-mounted metal-organic framework (SURMOF) nanofilm is proposed as a promising thermoelectric nanostructure, systematically characterized across its thickness. By employing LbL growth of HKUST-1 on self-assembled monolayers (SCnCOOH, n = 2, 10), nanofilms ranging from 5 to 30 nm in thickness are successfully fabricated. Thermoelectric characterization of these nanofilms revealed a significant enhancement in Seebeck coefficient (S) and power factor (PF), with PF values surpassing those of conventional organic SAMs by a factor of 103. Ultraviolet photoelectron spectroscopy (UPS) measurements further confirmed a correlation between molecular orbital alignment and thermoelectric performance, particularly in junctions doped with guest molecules such as ferrocene (Fc) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). These findings establish SURMOF nanofilms as a viable molecular thermoelectric architecture, offering enhanced carrier transport, guest-responsive electronic properties, and precise structural control at the nanoscale.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleUnveiling Thermoelectric Properties of SURMOF Nanofilms: A New Frontier in Molecular Thermoelectrics-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202510730-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105014753905-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORK-
dc.subject.keywordPlusENERGY-LEVEL ALIGNMENT-
dc.subject.keywordPlusHIGH SEEBECK COEFFICIENT-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusTHERMOPOWER-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusJUNCTIONS-
dc.subject.keywordAuthorMolecular Thermoelectrics-
dc.subject.keywordAuthorSurface-Mounted Metal-Organic Framework (SURMOF)-
dc.subject.keywordAuthorSelf-assembled monolayer (SAM)-
dc.subject.keywordAuthorPower Factor-
dc.subject.keywordAuthorElectronic Structure Modulation-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE