Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lim, Jeonghyeon | - |
dc.contributor.author | Jo, Seunghyun | - |
dc.contributor.author | Oh, Hyunjun | - |
dc.contributor.author | Choi, Pilsoo | - |
dc.contributor.author | Oh, Jungho | - |
dc.contributor.author | Seo, Kwangduck | - |
dc.contributor.author | Park, Hee-Young | - |
dc.contributor.author | Eom, Kwangsup | - |
dc.date.accessioned | 2025-09-17T02:03:16Z | - |
dc.date.available | 2025-09-17T02:03:16Z | - |
dc.date.created | 2025-09-16 | - |
dc.date.issued | 2025-08 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153174 | - |
dc.description.abstract | Nickel-iron layered double hydroxide (NiFe-LDH) has attracted considerable attention as an efficient electrocatalyst for the oxygen evolution reaction (OER) in alkaline media. However, the irreversible phase transition from gamma-Ni(Fe)OOH to beta-Ni(Fe)OOH, which is based on the low thermodynamic stability of gamma-Ni(Fe)OOH, results in the poor durability of NiFe-LDH. To address this, this study designs an NiFe-LDH/NiB heterostructure (NiFe@NiB). Because NiB acts as an electron acceptor, it modulates the Ni oxidation state (Ni3+ -> Ni(3+delta)+) and facilitates the beta-to-gamma phase optimization. Notably, NiFe@NiB maintains a higher gamma-phase fraction during OER cycling and exhibits an expanded 2D layered structure, which is a structural feature of the active gamma-phase. In conclusion, NiFe@NiB requires 75 mV lower overpotential to achieve 10 mA cm-2 and one-fifth degradation rate with 93.2% reduced Fe leaching over 120 hours of durability test compared to NiFe-LDH. This work presents a compelling strategy for designing efficient and durable electrocatalysts for sustainable hydrogen production. | - |
dc.language | English | - |
dc.publisher | Royal Society of Chemistry | - |
dc.title | A phase-optimized NiFe-LDH/NiB heterostructure as an efficient and durable oxygen evolution electrocatalyst in alkaline media | - |
dc.type | Article | - |
dc.identifier.doi | 10.1039/d5ta04549e | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Journal of Materials Chemistry A | - |
dc.citation.title | Journal of Materials Chemistry A | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | DOUBLE HYDROXIDE | - |
dc.subject.keywordPlus | OXIDATION | - |
dc.subject.keywordPlus | CATALYSTS | - |
dc.subject.keywordPlus | HYDROGEN | - |
dc.subject.keywordPlus | FUTURE | - |
dc.subject.keywordPlus | FUEL | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.