Full metadata record

DC Field Value Language
dc.contributor.authorPark, Young Sang-
dc.contributor.authorJung, Jiyoon-
dc.contributor.authorKoo, Mo Beom-
dc.contributor.authorKim, Jung Gyu-
dc.contributor.authorGu, Jinsuk-
dc.contributor.authorChoi, Gwan Hyun-
dc.contributor.authorKim, Seung Hwan-
dc.contributor.authorKim, Jeong F.-
dc.contributor.authorAhn, Cheol-Hee-
dc.contributor.authorHwang, Seung Sang-
dc.contributor.authorChung, Hoon Taek-
dc.contributor.authorLee, Albert S.-
dc.date.accessioned2025-09-17T02:32:35Z-
dc.date.available2025-09-17T02:32:35Z-
dc.date.created2025-09-16-
dc.date.issued2025-10-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153176-
dc.description.abstractFuel cells operating at intermediate temperature and low humidity conditions are a potential solution to overcome the drawbacks of both high and low temperature fuel cells for heavy duty transportation applications. Here, we report protonated phosphonic acid membranes that significantly increase the proton conductivity and durability of polymer electrolyte membrane fuel cells operating at intermediate temperatures and low humidity. The protonated phosphonic acid membrane with rigid aromatic polymers is an ideal strategy that utilizes the mixed vehicular and Grotthuss proton hopping ion conduction mechanisms of sulfonated and phosphonic acid polymers to increase proton conductivity and dimensional stability. By applying the protonated phosphonic acid system as both the membrane and ionomeric binder, fuel cell reached peak power densities of 0.51 W cm- 2 at 120 degrees C and 40 % RH without leachable liquid phosphoric acid and demonstrated over 1000 h of onset voltage durability of 30.6 mu V h- 1 at 100 degrees C and 40 % RH conditions vastly outperforming perfluorinated membrane and ionomer combinations.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleAll protonated phosphonic acid membrane and ionomers for high powered intermediate temperature proton exchange membrane fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.167336-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.522-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume522-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001562188800009-
dc.identifier.scopusid2-s2.0-105013546456-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN CROSSOVER-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusCONDUCTION-
dc.subject.keywordAuthorHydrocarbon membrane-
dc.subject.keywordAuthorPhosphonic acid ionomer-
dc.subject.keywordAuthorIntermediate temperature fuel cell-
dc.subject.keywordAuthorMembrane electrode assembly-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE