Full metadata record

DC Field Value Language
dc.contributor.authorLee, Hanseul-
dc.contributor.authorJung, Hye Ri-
dc.contributor.authorPak, Sooyeon-
dc.contributor.authorKwon, Namhee-
dc.contributor.authorKim, Sang Hoon-
dc.contributor.authorNa, Junhong-
dc.contributor.authorKo, Seoyeon-
dc.contributor.authorYoon, Seokhyun-
dc.contributor.authorKim, Won Mok-
dc.contributor.authorJeong, Jeung-hyun-
dc.contributor.authorKim, Donghwan-
dc.contributor.authorPark, Soohyung-
dc.contributor.authorKim, Gee Yeong-
dc.date.accessioned2025-09-22T02:00:39Z-
dc.date.available2025-09-22T02:00:39Z-
dc.date.created2025-09-16-
dc.date.issued2025-09-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153200-
dc.description.abstractNiO x is a p-type semiconductor widely used as a hole transport material in perovskite solar cells (PSCs), yet the impact of fabrication methods on its interfacial properties and the underlying mechanisms remains unclear. This study investigates how the fabrication process-nanoparticle precursor (NP NiO x ) and sputtering deposition (SP NiO x )-and interfacial space charge effects influence charge transport and device performance in NiO x /perovskite systems. SP NiO x exhibits a higher Ni3+/Ni2+ ratio and greater conductivity but induces significant hole depletion and band bending at the interface, leading to reduced open-circuit voltage and efficiency. In contrast, NP NiO x shows weaker hole depletion and a negligible hole barrier and enhances hole extraction, achieving a higher efficiency. The improved interfacial behavior of NP NiO x is attributed to the presence of carbon ligands, which mitigate interfacial recombination. These findings highlight the critical role of interfacial engineering in optimizing charge transport and performance in PSCs, providing valuable insights into the design of efficient hole transport layers (HTLs).-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleUnveiling NiOx /Perovskite Interfaces: Charge Transport and Device Performance in Perovskite Solar Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5c13836-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.17, no.37, pp.52263 - 52275-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume17-
dc.citation.number37-
dc.citation.startPage52263-
dc.citation.endPage52275-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusNICKEL-OXIDE-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusEXTRACTION-
dc.subject.keywordPlusXPS-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusNI3+-
dc.subject.keywordAuthorinverted perovskite solar cell-
dc.subject.keywordAuthornickel oxide-
dc.subject.keywordAuthorspace charge effect-
dc.subject.keywordAuthorinterface effect-
dc.subject.keywordAuthorhole depletion-
dc.subject.keywordAuthorcharge transport-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE